, Volume 187, Issue 1, pp 267–279 | Cite as

Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition

  • Héctor Rodríguez PérezEmail author
  • Guillaume Borrel
  • Céline Leroy
  • Jean-François Carrias
  • Bruno Corbara
  • Diane S. Srivastava
  • Régis Céréghino
Ecosystem ecology – original research


Future climate scenarios forecast a 10–50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12–22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.


Climate change Leaf litter decomposition Resilience Dry:wet cycles Tank-bromeliad ecosystem 



We thank the members of the Laboratoire Environnement de Petit Saut (HYDRECO) for technical support and the use of their facilities, and A. Compin (CNRS, UMR ECOLAB, Toulouse), M. Fichaux and F. Petitclerc (CNRS, UMR ECOFOG, Kourou) for field assistance. Financial support was provided by the Agence Nationale de la Recherche throughout the Rainwebs project (Grant ANR-12-BSV7-0022-01), an “Investissement d’Avenir” Grant (Labex CEBA, ref. ANR-10-LABX-25-01), and a CNRS Grant to the Groupement De Recherche International “Environmental Forcing on Freshwater biodiversity and ecosystem functioning” (GDRI EFF). We thank Dr. Kneitel and two anonymous reviewers for constructive criticism on an earlier version of this paper.

Author contribution statement

HRP, CL, J-FC, BC, DSS, RC conceived and designed the experiment, HRP, GB, CL, J-FC, BC, RC performed the experiment. HRP, GB, DSS analyzed the data, HRP, DSS, RC wrote the manuscript, and all authors contributed critically to the drafts and gave final approval for publication.

Supplementary material

442_2018_4123_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Alarcon-Gutierrez E, Floch C, Ziarelli F et al (2010) Drying–rewetting cycles and gamma-irradiation effects on enzyme activities of distinct layers from a Quercus ilex L. litter. Soil Biol Biochem 42:283–290. CrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. CrossRefGoogle Scholar
  3. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  5. Andersen DC, Nelson SM (2006) Flood pattern and weather determine Populus leaf litter breakdown and nitrogen dynamics on a cold desert floodplain. J Arid Environ 64:626–650. CrossRefGoogle Scholar
  6. Austin MT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558. CrossRefPubMedGoogle Scholar
  7. Bapiri A, Bååth E, Rousk J (2010) Drying–rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microb Ecol 60:419–428. CrossRefPubMedGoogle Scholar
  8. Battle JM, Golladay SW (2001) Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. Am Midl Nat 146:128–145.[0128:HIOBOL]2.0.CO;2 CrossRefGoogle Scholar
  9. Bogan MT, Boersma KS, Lytle DA (2015) Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw Biol 60:2547–2558. CrossRefGoogle Scholar
  10. Bonal D, Burban B, Stahl C et al (2016) The response of tropical rainforests to drought—lessons from recent research and future prospects. Ann For Sci 73:27–44. CrossRefPubMedGoogle Scholar
  11. Bouskill NJ, Lim HC, Borglin S et al (2013) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394. CrossRefPubMedGoogle Scholar
  12. Bouskill NJ, Wood TE, Baran R et al (2016) Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition. Terr Microbiol.
  13. Boyero L, Pearson RG, Dudgeon D et al (2011) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–1848. CrossRefPubMedGoogle Scholar
  14. Boyero L, Pearson RG, Gessner MO et al (2015) Leaf-litter breakdown in tropical streams: is variability the norm? Freshw Sci 34:759–769. CrossRefGoogle Scholar
  15. Brouard O, Céréghino R, Corbara B et al (2012) Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshw Biol 57:815–823. CrossRefGoogle Scholar
  16. Bruder A, Chauvet E, Gessner MO (2011) Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency. Funct Ecol 25:1269–1277. CrossRefGoogle Scholar
  17. Collins M, The CMIO Modelling Groups (2005) El Niño or La Niña-like climate change? Clim Dyn 24:89–104. CrossRefGoogle Scholar
  18. Coq S, Souquet J-M, Meudec E et al (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091. CrossRefPubMedGoogle Scholar
  19. Dedieu N, Clavier S, Vigouroux R et al (2016) A multimetric macroinvertebrate index for the implementation of the european water framework directive in French Guiana, East Amazonia. River Res Appl 32:501–515. CrossRefGoogle Scholar
  20. Dejean A, Céréghino R, Carpenter JM et al (2011) Climate change impact on neotropical social wasps. PLoS One 6:e27004. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dézerald O, Céréghino R, Corbara B et al (2015) Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw Biol 60:1917–1929. CrossRefGoogle Scholar
  22. Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change 3:811–815. CrossRefGoogle Scholar
  23. Fierer N, Schimel JP, Holden PA (2003) Influence of drying–rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71. CrossRefPubMedGoogle Scholar
  24. Foulquier A, Artigas J, Pesce S, Datry T (2015) Drying responses of microbial litter decomposition and associated fungal and bacterial communities are not affected by emersion frequency. Freshw Sci 34:1233–1244. CrossRefGoogle Scholar
  25. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks CAGoogle Scholar
  26. García-Palacios P, McKie BG, Handa IT et al (2016) The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol 30:819–829. CrossRefGoogle Scholar
  27. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384. CrossRefGoogle Scholar
  28. Gessner MO, Swan CM, Dang CK et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. CrossRefPubMedGoogle Scholar
  29. Gilbert GS, Harms KE, Hamill DN, Hubbell SP (2001) Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panamá. Oecologia 127:509–516. CrossRefPubMedGoogle Scholar
  30. Grant PR, Grant BR, Keller LF, Petren K (2000) Effects of El Niño events on Darwin’s finch productivity. Ecology 81:2442–2457.[2442:EOENOE]2.0.CO;2 Google Scholar
  31. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439. CrossRefGoogle Scholar
  32. Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763. CrossRefGoogle Scholar
  33. IPCC (2013) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Stocker TF, Quin D, Plattner G-K, Tignor M, Allen SK, Bousch J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, United Kingdom, New York, 1535 pp.
  34. Itioka T, Yamauti M (2004) Severe drought, leafing phenology, leaf damage and lepidopteran abundance in the canopy of a Bornean aseasonal tropical rain forest. J Trop Ecol 20:479–482. CrossRefGoogle Scholar
  35. Jocque M, Kernahan A, Nobes A et al (2010) How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649:293–300. CrossRefGoogle Scholar
  36. Kitching RL (2009) Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge University Press, CambridgeGoogle Scholar
  37. Langhans SD, Tockner K (2006) The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509. CrossRefPubMedGoogle Scholar
  38. Ledger ME, Brown LE, Edwards FK et al (2013) Drought alters the structure and functioning of complex food webs. Nat Clim Change 3:223–227. CrossRefGoogle Scholar
  39. Leroy C, Corbara B, Dejean A, Céréghino R (2009) Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytol 183:1124–1133. CrossRefPubMedGoogle Scholar
  40. Leroy C, Corbara B, Dézerald O, Trzcinski MK, Carrias JF, Dejean A, Céréghino R (2017) What drives detrital decomposition in neotropical tank bromeliads? Hydrobiologia 802:85–95.
  41. MacDougall AS, McCann KS, Gellner G, Turkington R (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494:86–89. CrossRefPubMedGoogle Scholar
  42. Makkonen M, Berg MP, Handa IT et al (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041. CrossRefPubMedGoogle Scholar
  43. Malhi Y, Roberts JT, Betts RA et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172. CrossRefPubMedGoogle Scholar
  44. Malik AA, Chowdhury S, Schlager V et al (2016) Soil fungal:bacterial ratios are linked to altered carbon cycling. Front Microbiol. Google Scholar
  45. Merrit RW, Cummins KW (1996) Habitat, life and behavioural adaptations of aquatic insects. In: Merrit RW, Cummins KW (ed) An introduction to the aquatic insects of North America. Kendall Hunt Pub Co, Dubuque, Iowa, USA, pp 41–73Google Scholar
  46. Mille-Lindblom C, Tranvik LJ (2003) Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb Ecol 45:173–182. CrossRefPubMedGoogle Scholar
  47. Mora-Gómez J, Duarte S, Cássio F et al (2018) Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Sci Total Environ 621:486–496. CrossRefPubMedGoogle Scholar
  48. Oksanen J, Blanchet FG, Kindt R et al (2015) Vegan: community ecology package. R 530 package version 2.2-1.531Google Scholar
  49. Oliver TH, Heard MS, Isaac NJB et al (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30:673–684. CrossRefPubMedGoogle Scholar
  50. Pascoal C, Cassio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pesce S, Zoghlami O, Margoum C et al (2016) Combined effects of drought and the fungicide tebuconazole on aquatic leaf litter decomposition. Aquat Toxicol 173:120–131. CrossRefPubMedGoogle Scholar
  52. Pinheiro J, Bates D, DebRoy S, Sarkan D, R Core Team (2014) Nlme: linear and nonlinear mixed effects models. R package version 3.1-118Google Scholar
  53. Powers JS, Montgomery RA, Adair EC et al (2009) Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–811. CrossRefGoogle Scholar
  54. R Core Team (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, p 541Google Scholar
  55. Rees GN, Watson GO, Baldwin DS, Mitchell AM (2006) Variability in sediment microbial communities in a semipermanent stream: impact of drought. J North Am Benthol Soc 25:370–378.[370:VISMCI]2.0.CO;2 CrossRefGoogle Scholar
  56. Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Srivastava DS, Kolasa J, Bengtsson J et al (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384. CrossRefPubMedGoogle Scholar
  58. Stewart RIA, Dossena M, Bohan DA et al (2013) Chapter two—mesocosm experiments as a tool for ecological climate change research. In: O’Gorman GW, EJ (eds) Advances in ecological research. Academic Press, pp 71–181Google Scholar
  59. Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395. CrossRefGoogle Scholar
  60. Strickland MS, Keiser AD, Bradford MA (2015) Climate history shapes contemporary leaf litter decomposition. Biogeochemistry 122:165–174. CrossRefGoogle Scholar
  61. Taylor BR, Parkinso D (1988) Does repeated wetting and drying accelerate decay of leaf litter? Soil Biol Biochem 20:647–656. CrossRefGoogle Scholar
  62. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320:1296–1297. CrossRefPubMedGoogle Scholar
  63. Trzcinski MK, Srivastava DS, Corbara B et al (2016) The effects of food web structure on ecosystem function exceeds those of precipitation. J Anim Ecol 85:1147–1160. CrossRefPubMedGoogle Scholar
  64. Wallestein M, Hall E (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109:35–47CrossRefGoogle Scholar
  65. Wymore AS, Compson ZG, Liu CM et al (2013) Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf–litter chemistry. Freshw Sci 32:663–672. CrossRefGoogle Scholar
  66. Zotz G, Thomas V (1999) How much water is in the tank? Model calculations for two epiphytic bromeliads. Ann Bot 83:183–192. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Héctor Rodríguez Pérez
    • 1
    • 6
    Email author return OK on get
  • Guillaume Borrel
    • 2
    • 7
  • Céline Leroy
    • 3
  • Jean-François Carrias
    • 2
  • Bruno Corbara
    • 2
  • Diane S. Srivastava
    • 4
  • Régis Céréghino
    • 5
  1. 1.CNRS, Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles)Kourou CedexFrance
  2. 2.CNRS, Laboratoire Microorganismes: Génome et EnvironnementUniversité Clermont AuvergneClermont-FerrandFrance
  3. 3.AMAP, IRD, CIRAD, CNRS, INRA, Université MontpellierMontpellierFrance
  4. 4.Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverCanada
  5. 5.Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRSUniversité de ToulouseToulouseFrance
  6. 6.Univ Rennes, CNRS, ECOBIO UMR 6553RennesFrance
  7. 7.Institut Pasteur, Laboratoire Biologie Moléculaire du Gène chez les ExtremophilesParisFrance

Personalised recommendations