Advertisement

Oecologia

, Volume 187, Issue 2, pp 507–519 | Cite as

The potential for host switching via ecological fitting in the emerald ash borer-host plant system

  • Don CipolliniEmail author
  • Donnie L. Peterson
Special Topic: From Plants to Herbivores

Abstract

The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

Keywords

Agrilus Ecological fitting Host switching Plant defense Herbivory 

Notes

Acknowledgements

We thank USDA APHIS Agreement 17-8130-0539 for funding during the preparation of this manuscript. We thank Emily Schneider, Kate Butterbaugh, Chad Rigsby, and Nate McCartney for assistance with collection of data cited in this manuscript. Suggestions by Caroline Müller and an anonymous reviewer substantially improved this manuscript.

Author contribution statement

DC and DLM wrote the manuscript.

References

  1. Agosta SJ (2006) On ecological fitting, plant–insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–565CrossRefGoogle Scholar
  2. Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134PubMedCrossRefGoogle Scholar
  3. Agosta SJ, Janz N, Brooks DR (2010) How specialists can be generalists: resolving the “parasite paradox” and implications for emerging infectious disease. Zool Curitib 27:151–162Google Scholar
  4. Akiyama K, Ohmomo S (1997) A checklist of the Japanese Buprestidae. Gekkan-Mushi 1:1–67Google Scholar
  5. Akiyama K, Ohmomo S (2000) The Buprestid beetles of the world. Iconographic series of insects 4. Gekkan-Mushi Co., LtdGoogle Scholar
  6. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302PubMedCrossRefGoogle Scholar
  7. Ammar S, del Contreras M, Gargouri B, Segura-Carretero A, Bouaziz M (2017) RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem Anal 28:217–229.  https://doi.org/10.1002/pca.2664 PubMedCrossRefGoogle Scholar
  8. Anulewicz AC, McCullough DG, Miller DL (2006) Oviposition and development of emerald ash borer (Agrilus planipennis) (Coleoptera: Buprestidae) on hosts and potential hosts in no-choice bioassays. Gt Lakes Entomol 39:99–112Google Scholar
  9. Anulewicz AC, Mccullough DG, Cappaert DL, Poland TM (2008) Host range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) in North America: results of multiple-choice field experiments. Environ Entomol 37:230–241.  https://doi.org/10.1603/0046-225X(2008)37[230:HROTEA]2.0.CO;2 PubMedCrossRefGoogle Scholar
  10. Barrett LG, Heil M (2012) Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci 17:282–292PubMedCrossRefGoogle Scholar
  11. Bellamy CL (2008) A world catalogue and bibliography of the jewel beetles (Coleoptera: Buprestoidea). In: Agrilinae: Agrilina through Trachyini, vol 4. Pensoft, SofiaGoogle Scholar
  12. Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46:703–727PubMedCrossRefGoogle Scholar
  13. Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects. Springer, New YorkGoogle Scholar
  14. Bernhard D, Fritzsch G, Glockner P, Wurst C (2005) Molecular insights into speciation in the Agrilus viridis-complex and the genus Trachys (Coleoptera: Buprestidae). Eur J Entomol 102:599CrossRefGoogle Scholar
  15. Boyer L, Elias R, Taoubi K, Debrauwer L, Faure R, Baghdikian B, Balansard G (2005) Lignans and secoiridoids from the root bark of Chionanthus virginicus L.: isolation, identification and HPLC analysis. Phytochem Anal 16:375–379.  https://doi.org/10.1002/pca.863 PubMedCrossRefGoogle Scholar
  16. Bray AM, Bauer LS, Poland TM, Haack RA, Cognato AI, Smith JJ (2011) Genetic analysis of emerald ash borer (Agrilus planipennis Fairmaire) populations in Asia and North America. Biol Invasion 13:2869–2887CrossRefGoogle Scholar
  17. Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  18. Bruce TJ, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274PubMedCrossRefGoogle Scholar
  19. Carroll SP, Boyd C (1992) Host race radiation in the soapberry bug: natural history with the history. Evolution 46:1052–1069PubMedCrossRefGoogle Scholar
  20. Chakraborty S, Whitehill JGA, Hill AL, Opiyo SO, Cipollini D, Herms DA, Bonello P (2014) Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash. Plant Cell Amp Environ 37:1009–1021.  https://doi.org/10.1111/pce.12215 CrossRefGoogle Scholar
  21. Chen Y, Poland TM (2010) Nutritional and defensive chemistry of three North American ash species: possible roles in host performance and preference by emerald ash borer. Gt Lakes Entomol 43:20–33Google Scholar
  22. Chen Y, Whitehill JGA, Bonello P, Poland TM (2011) Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry. Phytochemistry 72:1990–1998.  https://doi.org/10.1016/j.phytochem.2011.07.003 PubMedCrossRefGoogle Scholar
  23. Chittenden FH (1909) The twolined chestnut borer. USDA Bureau of Entomology Circular no 24, WashingtonGoogle Scholar
  24. Cipollini D (2015) White fringetree as a novel larval host for emerald ash borer. J Econ Entomol 108:370–375.  https://doi.org/10.1093/jee/tou026 PubMedCrossRefGoogle Scholar
  25. Cipollini D, Rigsby CM (2015) Incidence of infestation and larval success of emerald ash borer (Agrilus planipennis) on white fringetree (Chionanthus virginicus), Chinese fringetree (Chionanthus retusus), and devilwood (Osmanthus americanus). Environ Entomol 44:1375–1383.  https://doi.org/10.1093/ee/nvv112 PubMedCrossRefGoogle Scholar
  26. Cipollini D, Wang Q, Whitehill JGA, Powell JR, Bonello P, Herms DA (2011) Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer. J Chem Ecol 37:450–459.  https://doi.org/10.1007/s10886-011-9954-z PubMedCrossRefGoogle Scholar
  27. Cipollini D, Rigsby CM, Peterson DL (2017) Feeding and development of emerald ash borer (Coleoptera: Buprestidae) on cultivated olive, Olea europaea. J Econ Entomol.  https://doi.org/10.1093/jee/tox139
  28. Coleman TW, Chen Y, Graves AD, Hishinuma SM, Grulke NE, Flint ML, Seybold SJ (2014) Developing monitoring techniques for the invasive goldspotted oak borer (Coleoptera: Buprestidae) in California. Environ Entomol 43:729–743.  https://doi.org/10.1603/EN13162 PubMedCrossRefGoogle Scholar
  29. Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am Nat 161:507–522PubMedCrossRefGoogle Scholar
  30. Crook DJ, Mastro VC (2010) Chemical ecology of the emerald ash borer Agrilus planipennis. J Chem Ecol 36:101–112.  https://doi.org/10.1007/s10886-009-9738-x PubMedCrossRefGoogle Scholar
  31. Crook DJ, Khrimian A, Francese JA, Fraser I, Poland TM, Sawyer AJ, Mastro VC (2009) Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae). Environ Entomol 37:356–365CrossRefGoogle Scholar
  32. Davis S, Cipollini D (2014) Do mothers always know best? Oviposition mistakes and resulting larval performance of Pieris virginiensis on Alliaria petiolata, a novel, toxic host. Biol Inv 16:1941–1950CrossRefGoogle Scholar
  33. de Groot P, Grant GG, Poland TM, Scharbach R, Buchan L, Nott RW, Macdonald L, Pitt D (2008) Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage. J Chem Ecol 34:1170.  https://doi.org/10.1007/s10886-008-9514-3 PubMedCrossRefGoogle Scholar
  34. Duan JJ, Yurchenko G, Fuester R (2012) Occurrence of emerald ash borer (Coleoptera: Buprestidae) and biotic factors affecting its immature stages in the Russian far east. Environ Entomol 41:245–254.  https://doi.org/10.1603/EN11318 PubMedCrossRefGoogle Scholar
  35. Dunn JP, Kimmerer TW, Nordin GL (1986) Attraction of the twolined chestnut borer Agrilus bilineatus, (Weber) (Coleoptera: Buprestidae), and associated borers to volatiles of stressed white oak. Can Entomol 118:503–509CrossRefGoogle Scholar
  36. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  37. Erbilgin N, Ma C, Whitehouse C, Shan B, Najar A, Evenden M (2014) Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem. New Phytol 201:940–950PubMedCrossRefGoogle Scholar
  38. European and Mediterranean Plant Protection Organization (2013) Pest risk analysis for Agrilus planipennis. EPPO, Paris. Available at http://www.eppo.int/QUARANTINE/Pesk_Risk_Analysis/PRA_intro.htm
  39. Eyles A, Jones W, Riedl K, Cipollini D, Schwartz S, Chan K, Herms DA, Bonello P (2007) Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and two North American ash species (Fraxinus americana and Fraxinus pennsylvanica). J Chem Ecol 33:1430–1448.  https://doi.org/10.1007/s10886-007-9312-3 PubMedCrossRefGoogle Scholar
  40. Francese JA, Crook DJ, Fraser I, Lance DR, Sawyer AJ, Mastro VC (2010) Optimization of trap color for emerald ash borer (Coleoptera: Buprestidae). J Econ Entomol 103:1235–1241.  https://doi.org/10.1603/EC10088 PubMedCrossRefGoogle Scholar
  41. Futuyma DJ, McCafferty SS (1990) Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (Coleoptera, Chrysomelidae). Evolution 44:1885–1913PubMedCrossRefGoogle Scholar
  42. Gilman EF, Watson DG (1993) Chionanthus retusus, Chinese Fringetree. Fact Sheet ST-160. Department of Environmental Horticulture, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, FLGoogle Scholar
  43. Govindachari TR, Suresh G, Gopalakrishan G, Wesley SD, Singh NDP (1999) Antifeedant activity of some diterpenoids. Fitoterapia 70:269–274.  https://doi.org/10.1016/S0367-326X(99)00033-7 CrossRefGoogle Scholar
  44. Gülçin İ, Elias R, Gepdiremen A, Taoubi K, Köksal E (2009) Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci Technol 43:195.  https://doi.org/10.1007/s00226-008-0234-1 CrossRefGoogle Scholar
  45. Haack RA, Jendak E, Houping L, Marchant KR, Petrice TR, Poland TM, Ye H (2002) The emerald ash borer: a new exotic pest in North America. Michigan Entomol Soc 47:1–5Google Scholar
  46. Haack RA, Petrice TR, Miller DL, Bauer LS, Schiff NM (2003) Host range of the emerald ash borer. In Mastro V, Reardon R (eds), Emerald ash borer research and technology development meeting. 30 September–1 October 2003, USDA, Port Huron, MI, pp 38Google Scholar
  47. Haavik LJ, Coleman TW, Flint ML, Venette RC, Seybold SJ (2014) Densities of Agrilus auroguttatus and other borers in California and Arizona oaks. Insects 5:287–300.  https://doi.org/10.3390/insects5010287 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hanks LM, Paine TD, Millar JG (1993) Host species preference and larval performance in the wood-boring beetle Phoracantha semipunctata F. Oecologia 95:22–29PubMedCrossRefGoogle Scholar
  49. Harborne JB, Green PS (1980) A chemotaxonomic survey of flavonoids in leaves of the Oleaceae. Bot J Linn Soc 81:155–167.  https://doi.org/10.1111/j.1095-8339.1980.tb00946.x CrossRefGoogle Scholar
  50. Harvey JA, Biere A, Fortuna T, Vet LE, Engelkes T, Morriën E, Gols R, Verhoeven K, Vogel H, Macel M (2010) Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biol Invasions 12:3045–3059CrossRefGoogle Scholar
  51. Hermawan W, Nakajima S, Tsukuda R, Fujisaki K, Nakasuji F (1997) Isolation of an antifeedant compound from Andrographis paniculata (Acanthaceae) against the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Appl Entomol Zool 32:551–559.  https://doi.org/10.1303/aez.32.551 CrossRefGoogle Scholar
  52. Herms DA (2014) Host range and host resistance. Biol Control Emerald Ash Borer Tech Bull FHTET 9:153–163Google Scholar
  53. Herms DA, McCullough DG (2014) Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annu Rev Entomol 59:13–30.  https://doi.org/10.1146/annurev-ento-011613-162051 PubMedCrossRefGoogle Scholar
  54. Hill AL, Whitehill JGA, Opiyo SO, Phelan PL, Bonello P (2012) Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer. Tree Physiol 32:1522–1532.  https://doi.org/10.1093/treephys/tps104 PubMedCrossRefGoogle Scholar
  55. Janzen DH (1985) Dan Janzen’s thoughts from the tropics 1: on ecological fitting. Oikos 45:308–310CrossRefGoogle Scholar
  56. Jendek E, Grebennikov V (2011) Agrilus (Coleoptera. Nakladatelstvi Jan Farkač, Buprestidae) of East AsiaGoogle Scholar
  57. Klooster WS, Herms DA, Knight KS, Herms CP, McCullough DG, Smith A, Gandhi KJK, Cardina J (2014) Ash (Fraxinus spp.) mortality, regeneration, and seed bank dynamics in mixed hardwood forests following invasion by emerald ash borer (Agrilus planipennis). Biol Invasions 16:859–873.  https://doi.org/10.1007/s10530-013-0543-7 CrossRefGoogle Scholar
  58. Ko JH (1969) A list of forest insect pests in Korea. Forest Res Inst, SeoulGoogle Scholar
  59. Konno K, Hirayama C, Yasui H, Nakamura M (1999) Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci 96:9159–9164PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kostova I, Iossifova T (2007) Chemical components of Fraxinus species. Fitoterapia 78:85–106.  https://doi.org/10.1016/j.fitote.2006.08.002 PubMedCrossRefGoogle Scholar
  61. Kovacs KF, Haight RG, McCullough DG, Mercader RJ, Siegert NW, Liebhold AM (2010) Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol Econ 69:569–578.  https://doi.org/10.1016/j.ecolecon.2009.09.004 CrossRefGoogle Scholar
  62. Krieger RI, Feeny PP, Wilkinson CF (1971) Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science 172:579–581PubMedCrossRefGoogle Scholar
  63. Kurosawa Y (1956) Buprestid-fauna of eastern Asia (3). Bull Natl Sci Mus Tokyo 3:33–41Google Scholar
  64. Kwak JH, Kang MW, Roh JH, Choi SU, Zee OP (2009) Cytotoxic phenolic compounds from Chionanthus retusus. Arch Pharm Res 32:1681–1687.  https://doi.org/10.1007/s12272-009-2203-0 PubMedCrossRefGoogle Scholar
  65. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226PubMedCrossRefGoogle Scholar
  66. Liu YG (1966) A study on the ash buprestid beetle, Agrilus sp. Shenyang Annu Rep Shenyang Hortic Res Inst, Shenyang Liaoning, China 1–16Google Scholar
  67. Liu H, Bauer LS, Gao R, Zhao T, Petrice TR, Haack RA (2003) Exploratory survey for the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), and its natural enemies in China. Gt Lakes Entomol 36:191–204Google Scholar
  68. Liu H, Bauer LS, Miller DL, Zhao T, Gao R, Song L, Luan Q, Jin R, Gao C (2007) Seasonal abundance of Agrilus planipennis (Coleoptera: Buprestidae) and its natural enemies Oobius agrili (Hymenoptera: Encyrtidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae) in China. Biol Control 42:61–71.  https://doi.org/10.1016/j.biocontrol.2007.03.011 CrossRefGoogle Scholar
  69. Lyons DB, Scarr TA (2010) Workshop proceedings: guiding principles for managing the emerald ash borer in urban environments. 18 November 2009, Royal Botanical Gardens. Burlington, Ontario. Natural Resources Canada and Ontario Ministry of Natural ResourcesGoogle Scholar
  70. Malcicka M, Agosta SJ, Harvey JA (2015) Multi level ecological fitting: indirect life cycles are not a barrier to host switching and invasion. Glob Change Biol 21:3210–3218CrossRefGoogle Scholar
  71. McCullough DG, Poland TM, Anulewicz AC, Cappaert D (2009) Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash trees. Environ Entomol 38:1668–1679PubMedCrossRefGoogle Scholar
  72. Muilenburg VL, Herms DA (2012) A review of bronze birch borer (Coleoptera: Buprestidae) life history, ecology, and management. Environ Entomol 41:1372–1385.  https://doi.org/10.1603/EN12238 PubMedCrossRefGoogle Scholar
  73. Murphy SM, Feeny P (2006) Chemical facilitation of a naturally occurring host shift by Papilio Machaon butterflies (Papilionidae). Ecol Monogr 76:399–414CrossRefGoogle Scholar
  74. Nielsen DG, Muilenburg VL, Herms DA (2011) Interspecific variation in resistance of Asian, European, and North American birches (Betula spp.) to bronze birch borer (Coleoptera: Buprestidae). Environ Entomol 40:648–653.  https://doi.org/10.1603/EN10227 PubMedCrossRefGoogle Scholar
  75. Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92PubMedCrossRefGoogle Scholar
  76. Nyman T (2010) To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol Rev 85:393–411PubMedCrossRefGoogle Scholar
  77. Olias JM, Perez AG, Rios JJ, Sanz LC (1993) Aroma of virgin olive oil: biogenesis of the “green” odor notes. J Agric Food Chem 41:2368–2373CrossRefGoogle Scholar
  78. Opitz SE, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117CrossRefGoogle Scholar
  79. Orlova-Bienkowskaja MJ (2014) European range of the emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) is expanding: The pest destroys ashes in the northwest of Moscow oblast and in part of Tver oblast. Russ J Biol Invasions 5:32–37.  https://doi.org/10.1134/S2075111714010081 CrossRefGoogle Scholar
  80. Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci USA 106:18097–18102PubMedPubMedCentralCrossRefGoogle Scholar
  81. Peterson DL, Cipollini D (2017a) Distribution, predictors, and impacts of emerald ash borer (Agrilus planipennis) (Coleoptera: Buprestidae) infestation of white fringetree (Chionanthus virginicus). Environ Entomol 46:50–57.  https://doi.org/10.1093/ee/nvw148 PubMedCrossRefGoogle Scholar
  82. Peterson DL, Cipollini D (2017b) Longevity, consumption, and oviposition of emerald ash borer on novel hosts. In Entomology 2017: Ignite. Inspire. Innovate. Entomology Society of American, November 5–8 2017, Denver, CO. https://esa.confex.com/esa/2017/meetingapp.cgi/Paper/121006. Accessed 3 October 2017
  83. Peterson DL, Duan JJ, Yaninek JS, Ginzel MD, Sadof CS (2015) Growth of larval Agrilus planipennis (Coleoptera: Buprestidae) and fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in blue ash (Fraxinus quadrangulata) and green ash (F. pennsylvanica). Environ Entomol 44:1512–1521.  https://doi.org/10.1093/ee/nvv122 PubMedCrossRefGoogle Scholar
  84. Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America. J Forestry 104:118–124Google Scholar
  85. Pourrat H, Le Men J, Boustany N (1954) Ursolic acid; distribution of ursolic acid in Oleaceae. Ann Pharm Fr 12:59–62PubMedGoogle Scholar
  86. Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330PubMedCrossRefGoogle Scholar
  87. Prokopy RJ, Owens ED (1978) Visual generalist with visual specialist phytophagous insects: host selection behaviour and application to management. Entomol Exp Appl 24:609–620CrossRefGoogle Scholar
  88. Pureswaran DS, Poland TM (2009) Host selection and feeding preference of Agrilus planipennis (Coleoptera: Buprestidae) on ash (Fraxinus spp.). Environ Entomol 38:757–765.  https://doi.org/10.1603/022.038.0328 PubMedCrossRefGoogle Scholar
  89. Rebek EJ, Herms DA, Smitley DR (2008) Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.). Environ Entomol 37:242–246.  https://doi.org/10.1603/0046-225X(2008)37[242:IVIRTE]2.0.CO;2 PubMedCrossRefGoogle Scholar
  90. Rigsby CM, Muilenburg V, Tarpey T, Herms DA, Cipollini D (2014) Oviposition preferences of Agrilus planipennis (Coleoptera: Buprestidae) for different ash species support the mother knows best hypothesis. Ann Entomol Soc Am 107:773–781.  https://doi.org/10.1603/AN13185 CrossRefGoogle Scholar
  91. Rigsby CM, Herms DA, Bonello P, Cipollini D (2016) Higher activities of defense-associated enzymes may contribute to greater resistance of Manchurian ash to emerald ash borer than a closely related and susceptible congener. J Chem Ecol 42:782–792.  https://doi.org/10.1007/s10886-016-0736-5 PubMedCrossRefGoogle Scholar
  92. Rigsby CM, McCartney NB, Herms DA, Tumlinson JH, Cipollini D (2017) Variation in the volatile profiles of black and Manchurian ash in relation to emerald ash borer oviposition preferences. J Chem Ecol 43:831–842.  https://doi.org/10.1007/s10886-017-0873-5 PubMedCrossRefGoogle Scholar
  93. Rodriguez-Saona C, Poland TM, Miller JR, Stelinski LL, Grant GG, de Groot P, Buchan L, MacDonald L (2006) Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology 16:75–86.  https://doi.org/10.1007/s00049-005-0329-1 CrossRefGoogle Scholar
  94. Rutledge CE, Arango-Velez A (2017) Larval survival and growth of emerald ash borer (Coleoptera: Buprestidae) on white ash and white fringetree saplings under well-watered and water-deficit conditions. Environ Entomol 46:243–250.  https://doi.org/10.1093/ee/nvw080 PubMedCrossRefGoogle Scholar
  95. Siegert NW, McCullough DG, Liebhold AM, Telewski FW (2014a) Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers Distrib 20:847–858.  https://doi.org/10.1111/ddi.12212 CrossRefGoogle Scholar
  96. Siegert NW, Tluczek A, McCullough DG (2014b) Susceptibility of selected Asian, European, and North American ash species to emerald ash borer: preliminary results of no-choice bioassays. In: Mastro V, Reardon R (eds) Proceedings: Emerald Ash Borer Research and Technology development meeting, October 2014. USDA, WoosterGoogle Scholar
  97. Simmonds MSJ, Blaney WM, Ley SV, Savona G, Bruno M, Rodriguez B (1989) The antifeedant activity of clerodane diterpenoids from Teucrium. Phytochemistry 28:1069–1071.  https://doi.org/10.1016/0031-9422(89)80184-0 CrossRefGoogle Scholar
  98. Spadafora A, Mazzuca S, Chiappetta FF, Parise A, Perri E, Innocenti AM (2008) Oleuropein-specific-β-glucosidase activity marks the early response of olive fruits (Olea europaea) to mimed insect attack. Agric Sci Chin 7:703–712CrossRefGoogle Scholar
  99. Strong DR (1979) Biogeographic dynamics of insect-host plant communities. Ann Rev Ent 24:89–119CrossRefGoogle Scholar
  100. Tanis SR, McCullough DG (2012) Differential persistence of blue ash and white ash following emerald ash borer invasion. Can J For Res 42:1542–1551CrossRefGoogle Scholar
  101. Tanis SR, McCullough DG (2015) Host resistance of five Fraxinus species to Agrilus planipennis (Coleoptera: Buprestidae) and effects of paclobutrazol and fertilization. Environ Entomol 44:287–299.  https://doi.org/10.1093/ee/nvu005 PubMedCrossRefGoogle Scholar
  102. Thiemann D, Lopez V, Ray AM, Cipollini D (2016) The history of attack and success of emerald ash borer (Coleoptera: Buprestidae) on white fringetree in Southwestern Ohio. Environ Entomol 45:961–966.  https://doi.org/10.1093/ee/nvw073 PubMedCrossRefGoogle Scholar
  103. Tluczek AR, McCullough DG, Poland TM (2011) Influence of host stress on emerald ash borer (Coleoptera: Buprestidae) adult density, development, and distribution in Fraxinus pennsylvanica trees. Environ Entomol 40:357–366CrossRefGoogle Scholar
  104. Tóth G, Alberti Á, Sólyomváry A, Barabás C, Boldizsár I, Noszál B (2015) Phenolic profiling of various olive bark-types and leaves: HPLC–ESI/MS study. Ind Crops Prod 67:432–438.  https://doi.org/10.1016/j.indcrop.2015.01.077 CrossRefGoogle Scholar
  105. Valenta V, Moser D, Kapeller S, Essl F (2017) A new forest pest in Europe: a review of Emerald ash borer (Agrilus planipennis) invasion. J Appl Entomol 141:507–526.  https://doi.org/10.1111/jen.12369 CrossRefGoogle Scholar
  106. Villari C, Herms DA, Whitehill JGA, Cipollini D, Bonello P (2016) Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms. New Phytol 209:63–79.  https://doi.org/10.1111/nph.13604 PubMedCrossRefGoogle Scholar
  107. Wallander E (2008) Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst Evol 273:25–49.  https://doi.org/10.1007/s00606-008-0005-3 CrossRefGoogle Scholar
  108. Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot 87:1827–1841PubMedCrossRefGoogle Scholar
  109. Wang X-Y, Yang Z-Q, Gould JR, Zhang Y-N, Liu G-J, Liu E (2010) The biology and ecology of the Emerald Ash Borer, Agrilus planipennis, in China. J Insect Sci 10:1–23.  https://doi.org/10.1673/031.010.12801 CrossRefGoogle Scholar
  110. Whitehill JGA, Opiyo SO, Koch JL, Herms DA, Cipollini DF, Bonello P (2012) Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to Manchurian ash, a species resistant to emerald ash borer. J Chem Ecol 38:499–511.  https://doi.org/10.1007/s10886-012-0125-7 PubMedCrossRefGoogle Scholar
  111. Whitehill JGA, Rigsby C, Cipollini D, Herms DA, Bonello P (2014) Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 176:1047–1059.  https://doi.org/10.1007/s00442-014-3082-8 PubMedCrossRefGoogle Scholar
  112. Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770PubMedCrossRefGoogle Scholar
  113. Winkler IS, Mitter C, Scheffer SJ (2009) Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc Natl Acad Sci USA 106:18103–18108PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yeh PJ, Price TD (2004) Adaptive phenotypic plasticity and the successful colonization of anovel environment. Am Nat 164:531–542PubMedCrossRefGoogle Scholar
  115. Yv FL, Hai X, Wang Z, Yan A, Liu B, Bi Y (2015) Integration of visual and olfactory cues in host plant identification by the Asian Longhorned Beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). PLoS One 10:e0142752.  https://doi.org/10.1371/journal.pone.014275 PubMedCrossRefGoogle Scholar
  116. Zhang LY, Chen ZX, Yang GD, Huang QY, Huang QS (1995) Control techniques of emerald ash borer, Agrilus marcopoli, on velvet ash, Fraxinus velutina. Bull Hortic Sci Technol Tianjin 26:1–7Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesWright State UniversityDaytonUSA

Personalised recommendations