, Volume 186, Issue 1, pp 281–289 | Cite as

The effect of removing numerically dominant, non-native honey bees on seed set of a native plant

  • Annika J. Nabors
  • Henry J. Cen
  • Keng-Lou J. Hung
  • Joshua R. Kohn
  • David A. HolwayEmail author
Community ecology – original research


Pollination services are compromised by habitat destruction, land-use intensification, pesticides, and introduced species. How pollination services respond to such stressors depends on the capacity of pollinator assemblages to function in the face of environmental disruption. Here, we quantify how pollination services provided to a native plant change upon removal of the non-native, western honey bee (Apis mellifera)—a numerically dominant floral visitor in the native bee-rich ecosystems of southern California. We focus on services provided to clustered tarweed (Deinandra fasciculata), a native, annual forb that benefits from outcross pollination. Across five different study sites in coastal San Diego County, tarweed flowers attracted 70 insect taxa, approximately half of which were native bees, but non-native honey bees were always the most abundant floral visitor at each site. To test the ability of the native insect fauna to provide pollination services, we performed Apis removals within experimental 0.25 m2 plots containing approximately 20 tarweed plants and compared visitation and seed set between plants in removal and paired control plots (n = 16 pairs). Even though 92% of observed floral visits to control plots were from honey bees, Apis removal reduced seed production by only 14% relative to plants in control plots. These results indicate that native insect assemblages can contribute important pollination services even in ecosystems numerically dominated by introduced pollinators.


Introduced species Native bees Pollinator visitation Pollination services Seed set 



We gratefully acknowledge field and laboratory assistance of S. Gaylor, K. Powell, L. Rowe, S. Sandoval, C. Shough, and R. Trivedi. J. Nieh and two anonymous reviewers provided helpful comments on the manuscript. This work was performed in scrub habitats managed by the University of California Natural Reserve System, City of San Diego Open Space Parks, and the Otay-Sweetwater Unit of the San Diego National Wildlife Refuge. Financial support for this research came from a Mildred E. Mathias Graduate Student Research Grant from the University of California Natural Reserve System (AJN), a Ledell Family Grant (AJN), Natalie Hopkins Grant and Doc Burr Grant from the California Native Plant Society (AJN and HJC), a Grant-in-Aid of Research from Sigma Xi Scientific Research Society (AJN), and NSF Doctoral Dissertation Improvement Grant DEB-1501566 (KLJH and DAH).

Author contribution statement

AJN, HJC, KLJH, and DAH conceived and designed the experiments. AJN and HJC performed the experiments. AJN, HJC, KLJH, and DAH analyzed the data. AJN, HJC, KLJH, JRK, DAH wrote the manuscript.

Supplementary material

442_2017_4009_MOESM1_ESM.docx (77 kb)
Supplementary material 1 (DOCX 77 kb)
442_2017_4009_MOESM2_ESM.docx (116 kb)
Supplementary material 2 (DOCX 116 kb)


  1. Abe T, Wada K, Kato Y, Makino S, Okochi I (2011) Alien pollinator promotes invasive mutualism in an insular pollination system. Biol Invasions 13:957–967. CrossRefGoogle Scholar
  2. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:396–403. CrossRefGoogle Scholar
  3. Aizen MA, Morales CL, Vásquez DP, Garibaldi LA, Sáez A, Harder LD (2014) When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytol 204:322–328. CrossRefGoogle Scholar
  4. Alarcón R (2010) Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos 119:35–44. CrossRefGoogle Scholar
  5. Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807. CrossRefGoogle Scholar
  6. Balfour NJ, Gandy S, Ratnieks FLW (2015) Exploitative competition alters bee foraging and flower choice. Behav Ecol Sociobiol 69:1731–1738. CrossRefGoogle Scholar
  7. Ballantyne G, Baldock KCR, Willmer PG (2015) Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proc R Soc Lond B 282:20151130. CrossRefGoogle Scholar
  8. Barthell JF, Randall JM, Thorp RW, Wenner AM (2001) Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecol Appl 11:1870–1883.doi:10.1890/1051-0761(2001)011[1870:POSSIY]2.0.CO;2Google Scholar
  9. Basilio AM, Medan D, Torretta JP, Bartoloni NJ (2006) A year-long plant–pollinator network. Aust Ecol 31:975–983. CrossRefGoogle Scholar
  10. Brosi BJ, Briggs HM (2013) Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc Natl Acad Sci USA 110:13044–13048. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bruckman D, Campbell DR (2014) Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia 176:465–476. CrossRefPubMedGoogle Scholar
  12. Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615. CrossRefPubMedGoogle Scholar
  13. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc Lond B 268:2391–2397. CrossRefGoogle Scholar
  15. Dupont YL, Dennis L, Hansen M, Valido A, Olesen JM (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol Conserv 118:301–311. CrossRefGoogle Scholar
  16. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka K, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. CrossRefPubMedGoogle Scholar
  17. Geslin B, Gauzens B, Baude M, Dajoz I, Fontaine C, Henry M, Ropars L, Rollin O, Thebault E, Vereecken NJ (2017) Massively introduced managed species and their consequences for plant–pollinator interactions. Adv Ecol Res 57:147–199. CrossRefGoogle Scholar
  18. Giannini TC, Garibaldi LG, Acosta AL, Silva JS, Maia KP, Saraiva AM, Guimarães PR, Kleinert AMP (2015) Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS One 10:e0137198. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gonzalez-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyorgyi H, Woyciechowski M, Vila M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530. CrossRefPubMedGoogle Scholar
  20. Goulson D (2003) Effects of introduced bees on native ecosystems. Ann Rev Ecol Evol Syst 34:1–26. CrossRefGoogle Scholar
  21. Gross CL, Mackay D (1988) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol Conserv 86:169–178. CrossRefGoogle Scholar
  22. Hanna C, Foote D, Kremen C (2013) Invasive species management restores a plant-pollinator mutualism in Hawaii. J Appl Ecol 50:147–155. CrossRefGoogle Scholar
  23. Hung KLJ (2017) Effects of habitat fragmentation and introduced species on the structure and function of plant–pollinator interactions. PhD thesis, Division of Biological Sciences, University of California, San DiegoGoogle Scholar
  24. Hung K-LJ, Ascher JS, Gibbs J, Irwin RE, Bolger DT (2015) Effects of fragmentation on a distinctive coastal sage scrub bee fauna revealed through incidental captures by pitfall traps. J Ins Conserv 19:175–179. CrossRefGoogle Scholar
  25. Hung KLJ, Ascher JS, Holway DA (2017) Urbanization-induced habitat fragmentation erodes multiple components of temporal diversity in a Southern California native bee assemblage. PLoS One 12:e0184136. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Javorek SK, Mackenzie KE, Vander Kloet SP (2002) Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angustifolium). Ann Entomol Soc Am 95:345–351. doi:10.1603/0013-8746(2002)095[0345:CPEABH]2.0.CO;2Google Scholar
  27. Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, NiwotGoogle Scholar
  28. Kerr JT, Pindar A, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180. CrossRefPubMedGoogle Scholar
  29. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474. CrossRefGoogle Scholar
  30. Kono Y, Kohn JR (2015) Range and frequency of africanized honey bees in California (USA). PLoS One 10:e0137407. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lomov B, Keith DA, Hochuli DF (2010) Pollination and plant reproductive success in restored urban landscapes dominated by a pervasive exotic pollinator. Landsc Urban Plan 96:232–239. CrossRefGoogle Scholar
  32. Michener CD (1979) Biogeography of the bees. Ann Mo Bot Gard 66:277–347. CrossRefGoogle Scholar
  33. Moldenke AR, Neff JL (1974) The bees of California, a catalogue with special reference to pollination and ecological research. Origin and structure of ecosystems, Technical Reports 74-1 to 74-6. University of California, Santa Cruz, California, USAGoogle Scholar
  34. Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534. CrossRefGoogle Scholar
  35. Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev Camb Philos Soc 85:435–451. PubMedGoogle Scholar
  36. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. CrossRefPubMedGoogle Scholar
  37. Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229. CrossRefPubMedGoogle Scholar
  38. Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress towards understanding the ecological impacts of non-native species. Ecol Monogr 83:263–282. CrossRefGoogle Scholar
  39. Sáez A, Morales CL, Ramos LY, Aizen MA (2014) Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J Appl Ecol 51:1603–1612. CrossRefGoogle Scholar
  40. Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28:277–290CrossRefGoogle Scholar
  41. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vila M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. CrossRefPubMedGoogle Scholar
  42. Tanowitz BD (1982) Taxonomy of Hemizonia sect. Madiomeris (Asteraceae: Madiinae). Syst Bot 7:314–339CrossRefGoogle Scholar
  43. Thomson D (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458–470. CrossRefGoogle Scholar
  44. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216. CrossRefPubMedGoogle Scholar
  45. Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Ann Rev Ecol Evol Syst 45:89–113. CrossRefGoogle Scholar
  46. Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R, Nogales M, Herrera HW, Olesen JM (2013) Invaders of pollination networks in the Galápagos Islands: emergence of novel communities. Proc R Soc Lond B 280:20123040. CrossRefGoogle Scholar
  47. Vila M, Espinar JL, Hejda M, Hulme PE, Jarosík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysˇek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. CrossRefPubMedGoogle Scholar
  48. Watkins LH, Harbison JS (1969) California’s first modern beekeeper. Agric Hist 43:239–248Google Scholar
  49. Watts S, Ovalle DH, Herrera WM, Ollerton J (2012) Pollinator effectiveness of native and non-native flower visitors to an apparently generalist Andean shrub, Duranta mandonii (Verbenaceae). Plant Species Biol 27:147–158. CrossRefGoogle Scholar
  50. Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Annika J. Nabors
    • 1
  • Henry J. Cen
    • 1
  • Keng-Lou J. Hung
    • 1
  • Joshua R. Kohn
    • 1
  • David A. Holway
    • 1
    Email author
  1. 1.Section of Ecology, Behavior and Evolution, Division of Biological SciencesUniversity of CaliforniaSan DiegoUSA

Personalised recommendations