, Volume 185, Issue 4, pp 551–559 | Cite as

Phylogenetic trophic specialization: a robust comparison of herbivorous guilds

  • Leonardo R. JorgeEmail author
  • Vojtech Novotny
  • Simon T. Segar
  • George D. Weiblen
  • Scott E. Miller
  • Yves Basset
  • Thomas M. Lewinsohn


Resource specialization is a key concept in ecology, but it is unexpectedly difficult to parameterize. Differences in resource availability, sampling effort and abundances preclude comparisons of incompletely sampled biotic interaction webs. Here, we extend the distance-based specialization index (DSI) that measures trophic specialization by taking resource phylogenetic relatedness and availability into account into a rescaled version, DSI*. It is a versatile metric of specialization that expands considerably the scope and applicability, hence the usefulness, of DSI. The new metric also accounts for differences in abundance and sampling effort of consumers, which enables robust comparisons among distinct guilds of consumers. It also provides an abundance threshold for the reliability of the metric for rare species, a very desirable property given the difficulty of assessing any aspect of rare species accurately. We apply DSI* to an extensive dataset on interactions between insect herbivores from four folivorous guilds and their host plants in Papua New Guinean rainforests. We demonstrate that DSI*, contrary to the original DSI, is largely independent of sample size and weakly and non-linearly related with several host specificity measures that do not adjust for plant phylogeny. Thus, DSI* provides further insights into host specificity patterns; moreover, it is robust to the number and phylogenetic diversity of plant species selected to be sampled for herbivores. DSI* can be used for a broad range of comparisons of distinct feeding guilds, geographical locations and ecological conditions. This is a key advance in elucidating the interaction structure and evolution of highly diversified systems.


Host plant range Distance-based specialization index (DSI*) Statistical comparability Papua New Guinea 



This study is part of VN’s visit to the University of Campinas, supported by Fapesp (grant #14/16006-0). LRJ was supported by a postdoc scholarship from Fapesp (grant #14/16082-9). VN acknowledges financial support by The Grant Agency of the Czech Republic (14-04258S), the European Research Foundation (669609) and the National Science Foundation (DEB-841885, -9628840, -9707928, -0211591, and -0515678). STS acknowledges funding from a Univ. of South Bohemia Postdoc project ( CZ.1.07/2.3.00/30.0006) (funded by the EU Education for Competitiveness Operational Programme, the European Social Fund and the Czech State Budget). TML received a research grant from CNPq (311800/215-7). We thank the very careful reading and insightful suggestions made by the reviewers, which greatly improved the manuscript.

Author contribution statement

LRJ co-developed the idea of the paper, led the analysis and writing; VN contributed to idea of the paper, insect data set, and manuscript writing; STS and GDW developed plant phylogeny data and analysis, commented on the manuscript; SEM led taxonomic analysis of insects, commented on the manuscript; YB contributed to the insect data, commented on the manuscript; TML co-developed the idea of the paper, contributed to writing.

Supplementary material

442_2017_3980_MOESM1_ESM.nex (10 kb)
Supplementary material 1 (NEX 9 kb)
442_2017_3980_MOESM2_ESM.doc (20 kb)
Supplementary material 2 (DOC 20 kb)


  1. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433. doi: 10.1126/science.1123412 CrossRefPubMedGoogle Scholar
  2. Bélisle CJP (1992) Convergence theorems for a class of simulated annealing algorithms on ℝd. J Applied Probability 29:885–895. doi: 10.1017/S002190020004376X Google Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 289–300Google Scholar
  4. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chernomor O, Minh BQ, Forest F et al (2015) Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol Evol 6:83–91. doi: 10.1111/2041-210X.12299 CrossRefPubMedGoogle Scholar
  6. Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52:567–576. doi: 10.2307/1934144 CrossRefPubMedGoogle Scholar
  7. Craft KJ, Pauls SU, Darrow K et al (2010) Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera. Proc Natl Acad Sci 107:5041–5046. doi: 10.1073/pnas.0913084107 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dyer LA, Singer MS, Lill JT et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699. doi: 10.1038/nature05884 CrossRefPubMedGoogle Scholar
  9. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 586–608Google Scholar
  10. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi: 10.1016/0006-3207(92)91201-3 CrossRefGoogle Scholar
  11. Forister ML, Novotny V, Panorska AK et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447. doi: 10.1073/pnas.1423042112 CrossRefPubMedGoogle Scholar
  12. Hulcr J, Mogia M, Isua B, Novotny V (2007) Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecol Entomol 32:762–772. doi: 10.1111/j.1365-2311.2007.00939.x CrossRefGoogle Scholar
  13. Jorge LR, Prado PI, Almeida-Neto M, Lewinsohn TM (2014) An integrated framework to improve the concept of resource specialisation. Ecol Lett 17:1341–1350. doi: 10.1111/ele.12347 CrossRefPubMedGoogle Scholar
  14. Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960. doi: 10.1111/j.1461-0248.2009.01354.x CrossRefPubMedGoogle Scholar
  15. Lewinsohn TM, Roslin T (2008) Four ways towards tropical herbivore megadiversity. Ecol Lett 11:398–416CrossRefPubMedGoogle Scholar
  16. Lewinsohn TM, Novotny V, Basset Y (2005) Insects on plants: diversity of herbivore assemblages revisited. Annu Rev Ecol Evol Syst 36:597–620. doi: 10.1146/annurev.ecolsys.36.091704.175520 CrossRefGoogle Scholar
  17. Manly BFJ, McDonald L, Thomas D (1993) Resource selection by animals: Statistical design and analysis for field studies. SpringerGoogle Scholar
  18. Miller SE, Novotny V, Basset Y (2003) Studies on New Guinea moths. 1. Introduction (Lepidoptera). Proc Entomol Soc Wash 105:1034–1042Google Scholar
  19. Novotny V, Basset Y, Miller SE et al (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844. doi: 10.1038/416841a CrossRefPubMedGoogle Scholar
  20. Novotny V, Drozd P, Miller SE et al (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118. doi: 10.1126/science.1129237 CrossRefPubMedGoogle Scholar
  21. Novotny V, Miller SE, Baje L et al (2010) Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203. doi: 10.1111/j.1365-2656.2010.01728.x CrossRefPubMedGoogle Scholar
  22. Novotny V, Miller SE, Hrcek J et al (2012) Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. Am Nat 179:351–362. doi: 10.1086/664082 CrossRefPubMedGoogle Scholar
  23. Pellissier L, Fiedler K, Ndribe C et al (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825. doi: 10.1002/ece3.296 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space. Trends Parasitol 27:355–361. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  25. Strong DR, Southwood R, Lawton JH (1984) Insects on plants: community patterns and mechanisms. Blackwell Scientific, OxfordGoogle Scholar
  26. Symons FB, Beccaloni GW (1999) Phylogenetic indices for measuring the diet breadths of phytophagous insects. Oecologia 119:427–434. doi: 10.1007/s004420050804 CrossRefPubMedGoogle Scholar
  27. Szefer P, Carmona CP, Chmel K et al (2017) Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos. doi: 10.1111/oik.03670 Google Scholar
  28. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448 CrossRefGoogle Scholar
  29. Weiblen GD, Webb CO, Novotny V et al (2006) Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:S62–S75. doi:10.1890/0012-9658(2006)87[62:PDOHUI]2.0.CO;2Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Leonardo R. Jorge
    • 1
    Email author
  • Vojtech Novotny
    • 2
  • Simon T. Segar
    • 2
  • George D. Weiblen
    • 3
  • Scott E. Miller
    • 4
  • Yves Basset
    • 2
    • 4
    • 5
  • Thomas M. Lewinsohn
    • 1
  1. 1.Animal Biology Department, Biology InstituteUniversity of CampinasCampinasBrazil
  2. 2.Biology Centre of Czech Academy of Sciences and Faculty of ScienceUniversity of South Bohemia and Institute of EntomologyCeske BudejoviceCzech Republic
  3. 3.Bell Museum and Department of Plant BiologyUniversity of MinnesotaSaint PaulUSA
  4. 4.Smithsonian Tropical Research InstitutePanama CityRepublic of Panama
  5. 5.Maestria de EntomologiaUniversidad de PanamaPanama CityRepublic of Panama

Personalised recommendations