, Volume 185, Issue 4, pp 737–748 | Cite as

Temporal changes in bird functional diversity across the United States

  • Jean-Yves Barnagaud
  • Pierre Gaüzère
  • Benjamin Zuckerberg
  • Karine Princé
  • Jens-Christian Svenning
Community ecology – original research


Global changes are modifying the structure of species assemblages, but the generality of resulting diversity patterns and of their drivers is poorly understood. Any such changes can be detected and explained by comparing temporal trends in taxonomic and functional diversity over broad spatial extents. In this study, we addressed three complementary questions: How did bird taxonomic and functional diversity change over the past 40 years in the conterminous United States? Are these trends non-linear? Can temporal variations in functional diversity be explained by broad-scale changes in climate and vegetation productivity? We quantified changes in taxonomic and functional diversity for 807 bird assemblages over the past four decades (1970–2011) considering a suite of 16 ecological traits for 435 species. We found increases in local bird species richness and taxonomic equitability that plateaued in the early 2000’s while total abundance declined over the whole period. Functional richness, the total range of traits in an assemblage, increased due to the rising prevalence of species with atypical life-history strategies and under-represented habitat or trophic preferences. However, these species did not trigger major changes in the functional composition of bird assemblages. Inter-annual variations in climate and primary productivity explained the richness of bird life-history traits in local assemblages, suggesting that these traits are influenced by broad-scale environmental factors, while others respond more to more local drivers. Our results highlight that a comparative analysis of the multiple facets of functional diversity can raise novel insights on processes underlying temporal trends in biodiversity.


Breeding bird survey Climate Community dynamics Ecological traits NDVI Non-linear trends 



This study is a contribution by the Center for Informatics Research on Complexity in Ecology (CIRCE), funded by the Aarhus University Research Foundation under the AU Ideas program. JCS additionally considers this work a contribution to his VILLUM Investigator project “Biodiversity Dynamics in a Changing World” (BIOCHANGE) funded by VILLUM FONDEN. We wish to thank the Patuxent Wildlife Research Center for granting public access to the breeding bird survey data. We also thank Vincent Devictor and Olivier Gimenez for statistical advice and discussions on a previous version of the manuscript, and the Associate Editor and referees for constructive comments that improved substantially our work.

Author contribution statement

J.-Y. B. and J.-C. S. conceived the ideas; J.-Y. B. and K.P. collected the data; B. Z. reviewed the trait database; J.-Y. B. and P.G analyzed the data; J.-Y. B., P. G. and B. Z. interpreted the results; all the authors contributed substantially to the writing.

Supplementary material

442_2017_3967_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 Diagram of the data processing workflow and associated R functions (PDF 91 kb)
442_2017_3967_MOESM2_ESM.docx (34 kb)
Supplementary material 2 Variations in the spatial and temporal coverage distribution of the 807 Breeding Bird Survey routes considered in our analyses (DOCX 33 kb)
442_2017_3967_MOESM3_ESM.xlsx (90 kb)
Supplementary material 3 Species × trait matrix (XLSX 89 kb)
442_2017_3967_MOESM4_ESM.docx (1.4 mb)
Supplementary material 4 Quality of the functional space for each trait set (DOCX 1473 kb)
442_2017_3967_MOESM5_ESM.xlsx (11 kb)
Supplementary material 5 Regression coefficients for trend models (XLSX 10 kb)
442_2017_3967_MOESM6_ESM.xlsx (11 kb)
Supplementary material 6 Regression coefficients for environmental models (XLSX 10 kb)


  1. Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57CrossRefPubMedGoogle Scholar
  2. Bas Y, Devictor V, Moussus JP, Jiguet F (2008) Accounting for weather and time-of-day parameters when analysing count data from monitoring programs. Biodivers Conserv 17:3403–3416CrossRefGoogle Scholar
  3. Blenckner T, Hillebrand H (2002) North Atlantic oscillation signatures in aquatic and terrestrial ecosystems—a meta-analysis. Glob Change Biol 8:203–212CrossRefGoogle Scholar
  4. Cadotte MW (2011) The new diversity: management gains through insights into the functional diversity of communities. J Appl Ecol 48:1067–1069CrossRefGoogle Scholar
  5. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  6. Calba S, Maris V, Devictor V (2014) Measuring and explaining large-scale distribution of functional and phylogenetic diversity in birds: separating ecological drivers from methodological choices. Glob Ecol Biogeogr 23:669–678. doi: 10.1111/geb.12148 CrossRefGoogle Scholar
  7. Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 CrossRefPubMedGoogle Scholar
  8. Carmona CP, de Bello F, Mason NWH, Leps J (2016) Traits without borders: integrating functional diversity across scales. Trends Ecol Evol 31:382–394. doi: 10.1016/j.tree.2016.02.003 CrossRefPubMedGoogle Scholar
  9. Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391. doi: 10.1126/science.1187820 CrossRefPubMedGoogle Scholar
  10. Cisneros LM, Fagan ME, Willig MR (2015) Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Divers Distrib 21:523–533. doi: 10.1111/ddi.12277 CrossRefGoogle Scholar
  11. Currie DJ, Venne S (2017) Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob Ecol Biogeogr 26:333–346. doi: 10.1111/geb.12538 CrossRefGoogle Scholar
  12. Davies RB (1987) Hypothesis testing when a nuisance parameter is present only under the alternatives. Biometrika 74:33–43. doi: 10.2307/2336019 Google Scholar
  13. Devictor V, Julliard R, Clavel J et al (2008) Functional biotic homogenization of bird communities in disturbed landscapes. Glob Ecol Biogeogr 17:252–261CrossRefGoogle Scholar
  14. Devictor V, Mouillot D, Meynard C et al (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040PubMedGoogle Scholar
  15. Dornelas M, Magurran AE, Buckland ST et al (2012) Quantifying temporal change in biodiversity: challenges and opportunities. Proc R Soc B. doi: 10.1098/rspb.2012.1931 PubMedGoogle Scholar
  16. Dornelas M, Gotelli NJ, McGill B et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299. doi: 10.1126/science.1248484 CrossRefPubMedGoogle Scholar
  17. Evans KL, James NA, Gaston KJ (2006) Abundance, species richness and energy availability in the North American avifauna. Glob Ecol Biogeogr 15:372–385. doi: 10.1111/j.1466-822X.2006.00228.x CrossRefGoogle Scholar
  18. Flynn DFB, Gogol-Prokurat M, Nogeire T et al (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. doi: 10.1111/j.1461-0248.2008.01255.x CrossRefPubMedGoogle Scholar
  19. Gonzalez A, Cardinale BJ, Allington GRH et al (2016) Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97:1949–1960. doi: 10.1890/15-1759.1 CrossRefPubMedGoogle Scholar
  20. Hijmans RJ, Phillips S, Leathwick J et al (2017) Package ‘dismo’. Available online at:
  21. Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. doi: 10.1038/nature11118 PubMedGoogle Scholar
  22. Jarzyna MA, Jetz W (2016a) Detecting the multiple facets of biodiversity. Trends Ecol Evol 31:527–538. doi: 10.1016/j.tree.2016.04.002 CrossRefPubMedGoogle Scholar
  23. Jarzyna MA, Jetz W (2016b) A near half-century of temporal change in different facets of avian diversity. Glob Change Biol. doi: 10.1111/gcb.13571 Google Scholar
  24. Jiguet F, Gadot AS, Julliard R et al (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Change Biol 13:1672–1684CrossRefGoogle Scholar
  25. Jiguet F, Brotons L, Devictor V (2011) Community responses to extreme climatic conditions. Curr Zool 57:406–413CrossRefGoogle Scholar
  26. Jones J, Doran PJ, Holmes RT (2003) Climate and food synchronize regional forest bird abundances. Ecology 84:3024–3032. doi: 10.1890/02-0639 CrossRefGoogle Scholar
  27. Keil P, Storch D, Jetz W (2015) On the decline of biodiversity due to area loss. Nat Commun 6:8837. doi: 10.1038/ncomms9837 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kendall WL, Peterjohn BG, Sauer JR (1996) First-time observer effects in the North American breeding bird survey. Auk 113:823–829CrossRefGoogle Scholar
  29. Korhonen JJ, Soininen J, Hillebrand H (2010) A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91:508–517. doi: 10.1890/09-0392.1 CrossRefPubMedGoogle Scholar
  30. La Sorte FA, Boecklen WJ (2005) Changes in the diversity structure of avian assemblages in North America. Glob Ecol Biogeogr 14:367–378. doi: 10.1111/j.1466-822X.2005.00160.x CrossRefGoogle Scholar
  31. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi: 10.1890/08-2244.1 CrossRefPubMedGoogle Scholar
  32. Laliberté E, Wells JA, DeClerck F et al (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86. doi: 10.1111/j.1461-0248.2009.01403.x CrossRefPubMedGoogle Scholar
  33. Lamanna C, Blonder B, Violle C et al (2014) Functional trait space and the latitudinal diversity gradient. Proc Natl Acad Sci 111:13745–13750. doi: 10.1073/pnas.1317722111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  35. Legendre P, Legendre LFJ (2012) Numerical ecology, vol 24, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  36. Magurran AE, Dornelas M (2010) Biological diversity in a changing world. Philos Trans R Soc B Biol Sci 365:3593–3597CrossRefGoogle Scholar
  37. Magurran AE, Baillie SR, Buckland ST et al (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582. doi: 10.1016/j.tree.2010.06.016 CrossRefPubMedGoogle Scholar
  38. Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob Ecol Biogeogr 24:728–740. doi: 10.1111/geb.12299 CrossRefGoogle Scholar
  39. Mc Gill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185CrossRefGoogle Scholar
  40. Mc Kinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453CrossRefGoogle Scholar
  41. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30:104–113. doi: 10.1016/j.tree.2014.11.006 CrossRefPubMedGoogle Scholar
  42. Mittelbach GG, Schemske DW (2015) Ecological and evolutionary perspectives on community assembly. Trends Ecol Evol 30:241–247. doi: 10.1016/j.tree.2015.02.008 CrossRefPubMedGoogle Scholar
  43. Monnet A-C, Jiguet F, Meynard CN et al (2014) Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Glob Ecol Biogeogr 23:780–788. doi: 10.1111/geb.12179 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Muggeo V (2008) segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25Google Scholar
  45. Pearce-Higgins JW, Green RE (2014) Birds and climate change: impacts and conservation responses, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. Pereira HM, David Cooper H (2006) Towards the global monitoring of biodiversity change. Trends Ecol Evol 21:123–129CrossRefPubMedGoogle Scholar
  47. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. doi: 10.1111/j.1461-0248.2006.00924.x CrossRefPubMedGoogle Scholar
  48. Princé K, Zuckerberg B (2015) Climate change in our backyards: the reshuffling of North America’s winter bird communities. Glob Change Biol 21:572–585. doi: 10.1111/gcb.12740 CrossRefGoogle Scholar
  49. Purschke O, Schmid BC, Sykes MT et al (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. J Ecol 101:857–866. doi: 10.1111/1365-2745.12098 CrossRefGoogle Scholar
  50. Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology. Academic Press, LondonGoogle Scholar
  51. Sauer JR, Hines JE, Fallon JE et al (2011) The north american breeding bird survey, results and analysis 1966–2010, Version 12.07.2011. USGS Patuxent Wildlife Research Center, Laurel, MDGoogle Scholar
  52. Schipper AM, Belmaker J, de Miranda MD et al (2016) Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob Change Biol 22:3948–3959. doi: 10.1111/gcb.13292 CrossRefGoogle Scholar
  53. Schleuning M, Fründ J, García D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38:380–392. doi: 10.1111/ecog.00983 CrossRefGoogle Scholar
  54. Sibley DA (2014) The sibley guide to birds, 2nd edn. Knopf, New YorkGoogle Scholar
  55. Sohl TL (2014) The relative impacts of climate and land-use change on conterminous united states bird species from 2001 to 2075. PLoS One 9:e112251. doi: 10.1371/journal.pone.0112251 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Soininen J (2010) Species turnover along abiotic and biotic gradients: patterns in space equal patterns in time? Bioscience 60:433–439. doi: 10.1525/bio.2010.60.6.7 CrossRefGoogle Scholar
  57. Stegen JC, Freestone AL, Crist TO et al (2013) Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob Ecol Biogeogr 22:202–212. doi: 10.1111/j.1466-8238.2012.00780.x CrossRefGoogle Scholar
  58. Vellend M, Baeten L, Myers-Smith IH et al (2013) Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc Natl Acad Sci 110:19456–19459. doi: 10.1073/pnas.1312779110 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi: 10.1890/07-1206.1 CrossRefPubMedGoogle Scholar
  60. Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892CrossRefGoogle Scholar
  61. White EP, Ernest SKM, Adler PB et al (2010) Integrating spatial and temporal approaches to understanding species richness. Philos Trans R Soc B Biol Sci 365:3633–3643. doi: 10.1098/rstb.2010.0280 CrossRefGoogle Scholar
  62. Wood SN (2006) Generalized additive models. An introduction with R. Chapman & Hall/CRC, LondonGoogle Scholar
  63. Zuckerberg B, Woods AM, Porter WF (2009) Poleward shifts in breeding bird distributions in New York State. Glob Change Biol 15:1866–1883. doi: 10.1111/j.1365-2486.2009.01878.x CrossRefGoogle Scholar
  64. Zuur A (2011) Mixed effects models and extensions in ecology with R, Softcover reprint of hardcover, 1st edn. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jean-Yves Barnagaud
    • 1
    • 2
  • Pierre Gaüzère
    • 3
  • Benjamin Zuckerberg
    • 4
  • Karine Princé
    • 4
    • 5
  • Jens-Christian Svenning
    • 2
  1. 1.Biogéographie et Ecologie des VertébrésCNRS, PSL Research University, EPHE, UM, SupAgro, IND, INRA, UMR 5175 CEFEMontpellierFrance
  2. 2.Section for Ecoinformatics and BiodiversityAarhus UniversityAarhusDenmark
  3. 3.Institut des Sciences de l’EvolutionUniversité Montpellier, CNRS, IRDMontpellier Cedex 05France
  4. 4.Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.UMR 7204, CESCOUniversité Paris Sorbonne, CNRS-MNHN-UPMCParisFrance

Personalised recommendations