, Volume 185, Issue 3, pp 487–498 | Cite as

Similar alpha and beta diversity changes in tropical ant communities, comparing savannas and rainforests in Brazil and Indonesia

  • Fernando A. Schmidt
  • Carla R. Ribas
  • Tathiana G. Sobrinho
  • Rosichon Ubaidillah
  • José H. Schoereder
  • Yann Clough
  • Teja Tscharntke
Community ecology – original research


Local biodiversity can be expected to be similar worldwide if environmental conditions are similar. Here, we hypothesize that tropical ant communities with different types of regional species pools but at similar habitat types in Brazil and Indonesia show similar diversity patterns at multiple spatial scales, when comparing (1) the relative contribution of alpha and beta diversity to gamma diversity; (2) the number of distinct communities (community differentiation); and (3) the drivers of β-diversity (species replacement or species loss/gain) at each spatial scale. In both countries, rainforests and savannas (biome scale) were represented by three landscapes (landscape scale), each with four transects (site scale) and each transect with 10 pitfall traps (local scale). At the local scale, α-diversity was higher and β-diversity lower than expected from null models. Hence, we observed a high coexistence of species across biomes. The replacement of species seemed the most important factor for β-diversity among sites and among landscapes across biomes. Species sorting, landscape-moderated species distribution and neutral drift are potential mechanisms for the high β-diversity among sites within landscapes. At the biome scale, different evolutionary histories produced great differences in ant community composition, so the replacement of species is, at this scale, the most important driver of beta diversity. According to these key findings, we conclude that distinct regional ant species pools from similar tropical habitat types are similarly constrained across several spatial scales, regardless of the continent considered.


Biodiversity patterns Community composition Formicidae Transcontinental comparison Spatial ecology 



We thank the Brazilian and Indonesian environmental offices and managers of protected areas that readily processed our sampling licenses requests. We are in debt with O. Efendy (Cibinong Research Center for Biology—LIPI) for kindly helping F.A. Schmidt with all administrative, structural and logistic issues in Indonesia. We are most grateful to several field assistants for their help, specifically to R. Solar and Endang that were kind and friendly company during field expeditions. We are in debt with several colleagues that helped in ant mounting, sorting and identification work, specifically to F. Rezende, R. Jesus, A. Rizali, V. Sandoval and G. Camacho. We are most grateful to F. Neves, J. Louzada, R. Campos, C. Staudhammer and two anonymous referees for the critical reading of previous versions of the manuscript. We thank CAPES, CNPq, FAPEMIG, DAAD and the DFG (CRC 990 EFForTS) for financial support and grants.

Author contributions

FAS, CRR, TGS, JHS, YC and TT formulated the idea. FAS conducted the fieldwork, analyzed data and wrote the manuscript. The other authors provided editorial advice.

Supplementary material

442_2017_3960_MOESM1_ESM.pdf (185 kb)
Supplementary material 1 (PDF 184 kb)
442_2017_3960_MOESM2_ESM.pdf (134 kb)
Supplementary material 2 (PDF 134 kb)
442_2017_3960_MOESM3_ESM.pdf (88 kb)
Supplementary material 3 (PDF 88 kb)
442_2017_3960_MOESM4_ESM.pdf (26 kb)
Supplementary material 4 (PDF 25 kb)


  1. Andersen AN (2008) Not enough niches: non-equilibrial process promoting species coexistence in diverse ant communities. Aust Ecol 33:211–220. doi: 10.1111/j.1442-9993.2007.01810.x CrossRefGoogle Scholar
  2. Arnan X, Gaucherel C, Andersen AN (2011) Dominance and species co-occurrence in highly diverse ant communities: a test of the interstitial hypothesis and discovery of a three-tiered competition cascade. Oecol 166:783–794. doi: 10.1007/s00442-011-1919-y CrossRefGoogle Scholar
  3. Arnan X, Cerdá X, Retana J (2015) Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ 3:e1241. doi: 10.7717/peerj.1241 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arnan X, Cerdá X, Retana J (2016) Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 39:1–10. doi: 10.1111/ecog.01938 CrossRefGoogle Scholar
  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. doi: 10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  6. Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. doi: 10.1111/j.2041-210X.2012.00224.x CrossRefGoogle Scholar
  7. Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WL, Delabie JH, Silvestre R (2000) Field techniques for the study of ground dwelling ants. An overview, description, and evaluation. In: Agosti D, Majer JD, Alonso LE, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington and London, pp 122–144Google Scholar
  8. Bishop TR, Robertson MP, van Rensburg BJ, Parr CL (2015) Contrasting species and functional beta diversity in montane ant assemblages. J Biogeogr 42:1776–1786. doi: 10.1111/jbi.12537 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press, CambridgeGoogle Scholar
  10. Campos RI, Vasconcelos HL, Andersen AN, Frizzo TL, Spena KC (2011) Multi-scale ant diversity in savanna woodlands: an intercontinental comparison. Aust Ecol 36:983–992. doi: 10.1111/j.1442-9993.2011.02255.x CrossRefGoogle Scholar
  11. Cardoso DC, Sobrinho TG, Schoereder JH (2010) Ant community composition and its relationship with phytophysiognomies in a Brazilian Restinga. Insect Soc 57:293–301. doi: 10.1007/s00040-010-0084-3 CrossRefGoogle Scholar
  12. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–789. doi: 10.1126/science.1166955 CrossRefPubMedGoogle Scholar
  13. Cerdá X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecol News 18:131–147Google Scholar
  14. Chao A, Chiu CH, Hsieh TC (2012) Proposing a resolution to debates on diversity partitioning. Ecology 93:2037–2051. doi: 10.1890/11-1817.1 CrossRefPubMedGoogle Scholar
  15. Clough Y, Holzschuh A, Gabriel D, Purtauf T, Kleijn D, Kruess A, Steffan-Dewenter I, Tscharntke T (2007) Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. J App Ecol 44:804–812. doi: 10.1111/j.1365-2664.2007.01294.x CrossRefGoogle Scholar
  16. Crist TO, Veech JA, Gering JC, Summervile KS (2003) Partitioning species diversity trough landscapes and regions: a hierarchical analysis of α, β, and γ diversity. Am Nat 6:734–743. doi: 10.1086/378901 CrossRefGoogle Scholar
  17. Dobrovolski R, Melo AS, Cassemiro FAS, Diniz-Filho JAF (2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 21:191–197. doi: 10.1111/j.1466-8238.2011.00671.x CrossRefGoogle Scholar
  18. Fisher BL (2010) Ants of Borneo. Ant Course 2010 guide to genera. Ant Coure 2010 material. Danum Valley Field Course, Sabah BorneoGoogle Scholar
  19. Fowler D, Lessard J-P, Sanders NJ (2014) Niche filtering rather than partitioning shapes the structure of temperate forest ant communities. J Anim Ecol 83:943–952. doi: 10.1111/1365-2656.12188 CrossRefPubMedGoogle Scholar
  20. Gabriel D, Roschewitz I, Tscharntke T, Thies C (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecol Appl 16:2011–2021. doi:10.1890/1051-0761(2006)016[2011:BDADSS]2.0.CO;2Google Scholar
  21. Gering JC, Crist TO (2002) The alpha–beta–regional relationship: providing new insights into local–regional patterns of species richness and scale dependence of diversity components. Ecol Lett 5:433–444. doi: 10.1046/j.1461-0248.2002.00335.x CrossRefGoogle Scholar
  22. Gotelli NJ, Ellison AM, Dunn RR, Sanders NJ (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecol News 15:13–19Google Scholar
  23. Hortal J, Diniz-Filho JAF, Bini LM, Rodriguéz MA, Baselga A, Nogués-Bravo D, Rangel TF, Hawkins BA, Lobo JM (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol Lett 14:741–748. doi: 10.1111/j.1461-0248.2011.01634.x CrossRefPubMedGoogle Scholar
  24. IBGE (2004) Mapas de Biomas do Brasil. IBGE, Rio de JaneiroGoogle Scholar
  25. Jenkins DG, Ricklefs RE (2011) Biogeography and ecology: two views of one world. Phil Trans R Soc B 366:2331–2335. doi: 10.1098/rstb.2011.0064 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jesus RM, Rolim SG (2005) Fitossociologia da Mata Atlântica de Tabuleiro. Sociedade de Investigações Florestais, ViçosaGoogle Scholar
  27. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439. doi: 10.1890/06-1736.1 CrossRefPubMedGoogle Scholar
  28. Lach L, Parr CL, Abott KL (2010) Ant ecology. Oxford University Press, New YorkGoogle Scholar
  29. Liu C, Guénard B, Blanchard B, Peng Y-O, Economo EP (2016) Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecol Monogr 86:215–227CrossRefGoogle Scholar
  30. Loreau M (2000) Are communities saturated? On the relationship between α, β and γ diversity. Ecol Lett 3:73–76. doi: 10.1046/j.1461-0248.2000.00127.x CrossRefGoogle Scholar
  31. Marques T, Schoereder JH (2013) Ant diversity partitioning across spatial scales: ecological processes and implications for conserving Tropical Dry Forests. Aust Ecol 39:72–82. doi: 10.1111/aec.12046 CrossRefGoogle Scholar
  32. Olson DME, Wikramanayake D, Powel GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CGoogle Scholar
  33. Oksanen J, Blanchet FG, Kindt R et al (2011) Vegan: community ecology package. R package, version 2.0-0. Avaliable at: http://cran.r-project.org, http://vegan.r-forge.r-project.org/. Accessed Oct 2011
  34. Pacheco R, Vasconcelos H (2012) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodivers Conserv 21:797–809. doi: 10.1007/s10531-011-0221-y CrossRefGoogle Scholar
  35. Paknia O, Pfeiffer M (2011) Hierarchical partitioning of ant diversity: implications for conservation of biogeographical diversity in arid and semi-arid areas. Divers Distrib 17:122–131. doi: 10.1111/j.1472-4642.2010.00719.x CrossRefGoogle Scholar
  36. Palacio EE, Fernandéz F (2003) Claves para las subfamilias y géneros. In: Fernández F (ed) Introducción a las Hormigas de la Región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 233–260Google Scholar
  37. Partono S, Haryanta A, Akitoshi K, Anugrah N, Risman A, Dwijayanto S, Sya’bani B, Rahmawatti N, Widianti E (eds) (2010) Biodiversity of 50 National Parks in Indonesia. Nature Conservation Information Center and Japan International Cooperation Agency, Bogor-JakartaGoogle Scholar
  38. Pfeiffer M, Mezger D (2012) Biodiversity assessment in incomplete inventories: leaf ant communities in several types of Borneo rain forest. Plos One 7:e40729. doi: 10.1371/journal.pone.0040729 CrossRefPubMedPubMedCentralGoogle Scholar
  39. R Development Core Team R (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, VienaGoogle Scholar
  40. Ribas CR, Schoereder JH (2002) Are all ant mosaics caused by competition? Oecol 131:606–611. doi: 10.1007/s00442-002-0912-x CrossRefGoogle Scholar
  41. Ribas CR, Schoereder JH (2004) Determining factors of arboreal ant mosaics in Cerrado vegetation (Hymenoptera: Formicidae). Sociobiol 44:49–68Google Scholar
  42. Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma Cerrado. In: Almeida SP (ed) Sano SM. Cerrado, Ambiente e Flora, pp 89–166Google Scholar
  43. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi: 10.1046/j.1461-0248.2003.00554.x CrossRefGoogle Scholar
  44. Schluter D, Ricklefs RE (1993) Convergence and the regional component of species diversity. In: Ricklefs RE, Schluter D (eds) Species diversity and ecological communities. University of Chicago Press, Chicago, pp 230–240Google Scholar
  45. Schmidt FA, Ribas CR, Schoereder JH (2013) How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecol Indic 24:158–166. doi: 10.1016/j.ecolind.2012.05.031 CrossRefGoogle Scholar
  46. Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. Bioscience 52:225–233. doi:10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2Google Scholar
  47. Smith B, Wilson JB (2002) Community convergence: ecological and evolutionary. Folia Geob 37:171–183. doi: 10.1007/BF02804230 CrossRefGoogle Scholar
  48. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12. doi: 10.1111/j.0906-7590.2007.04817.x CrossRefGoogle Scholar
  49. Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JC, Schoereder JH, Vieira ICG, Nally RM, Gardner TA (2015) pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. doi: 10.1111/ele.12494 CrossRefPubMedGoogle Scholar
  50. Stein A, Kreft H (2015) Terminology and quantification of environmental heterogeneity in species-richness research. Biol Rev 90:815–836. doi: 10.1111/brv.12135 CrossRefPubMedGoogle Scholar
  51. Trainor CR, Andersen AN (2010) The ant fauna of Timor and neighbouring islands: potential bridges between the disjunct faunas of South East Asia and Australia. Aust J Zoo 58:133–144. doi: 10.1071/ZO09113 CrossRefGoogle Scholar
  52. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Seteffan-Dewenter I, Thies C, van der Putten WH, Westpahl C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685. doi: 10.1111/j.1469-185X.2011.00216.x CrossRefPubMedGoogle Scholar
  53. Vasconcelos HL, Vilhena JMS (2006) Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: a comparison of forests and savannas. Biotropica 38:100–106CrossRefGoogle Scholar
  54. Vasconcelos HL, Vilhena JMS, Facure KG et al (2010) Patterns of ant species diversity and turnover across 2000 km of Amazonian floodplain forest. J Biogeogr 37:432–440. doi: 10.1111/j.1365-2699.2009.02230.x CrossRefGoogle Scholar
  55. Veech JA, Summervile KS, Crist TO, Gering C (2002) The additive partitioning of diversity: recent revival of an old idea. Oikos 99:3–9. doi: 10.1034/j.1600-0706.2002.990101.x CrossRefGoogle Scholar
  56. Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167. doi: 10.1046/j.1365-2699.2000.00489.x CrossRefGoogle Scholar
  57. Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706. doi: 10.1111/j.1365-2699.2012.02715.x CrossRefGoogle Scholar
  58. Wiescher PT, Pearce-Duvet JMC, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074. doi: 10.1007/s00442-012-2262-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fernando A. Schmidt
    • 1
    • 2
  • Carla R. Ribas
    • 3
  • Tathiana G. Sobrinho
    • 4
    • 5
  • Rosichon Ubaidillah
    • 6
  • José H. Schoereder
    • 4
  • Yann Clough
    • 7
    • 8
  • Teja Tscharntke
    • 7
  1. 1.Programa de Pós-Graduação em Entomologia, Departamento de EntomologiaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Centro de Ciências Biológicas e da NaturezaUniversidade Federal do AcreRio BrancoBrazil
  3. 3.Setor de Ecologia e Conservação, Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
  4. 4.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil
  5. 5.Departamento de Ciências Agrárias e BiológicasUniversidade Federal do Espírito Santo, Centro Universitário Norte do Espírito Santo (UFES/CEUNES)São MateusBrazil
  6. 6.Entomology Laboratory, Zoology Division (Mueum Zoologicum Bogoriense)Research Center for Biology, LIPIBogorIndonesia
  7. 7.Agroecology, Georg-August-University GöttingenGöttingenGermany
  8. 8.Centre for Environmental and Climate ResearchLund UniversityLundSweden

Personalised recommendations