Oecologia

, Volume 185, Issue 3, pp 351–363 | Cite as

Maternal allocation of carotenoids increases tolerance to bacterial infection in brown trout

  • Laetitia G. E. Wilkins
  • Lucas Marques da Cunha
  • Laure Menin
  • Daniel Ortiz
  • Véronique Vocat-Mottier
  • Matay Hobil
  • David Nusbaumer
  • Claus Wedekind
Physiological ecology - original research

Abstract

Life-history theory predicts that iteroparous females allocate their resources differently among different breeding seasons depending on their residual reproductive value. In iteroparous salmonids there is typically much variation in egg size, egg number, and in the compounds that females allocate to their clutch. These compounds include various carotenoids whose functions are not sufficiently understood yet. We sampled 37 female and 35 male brown trout from natural streams, collected their gametes for in vitro fertilizations, experimentally produced 185 families in 7 full-factorial breeding blocks, raised the developing embryos singly (n = 2960), and either sham-treated or infected them with Pseudomonas fluorescens. We used female redness (as a measure of carotenoids stored in the skin) and their allocation of carotenoids to clutches to infer maternal strategies. Astaxanthin contents largely determined egg colour. Neither egg weight nor female size was correlated with the content of this carotenoid. However, astaxanthin content was positively correlated with larval growth and with tolerance against P. fluorescens. There was a negative correlation between female skin redness and the carotenoid content of their eggs. Although higher astaxanthin contents in the eggs were associated with an improvement of early fitness-related traits, some females appeared not to maximally support their current offspring as revealed by the negative correlation between female red skin colouration and egg carotenoid content. This correlation was not explained by female size and supports the prediction of a maternal trade-off between current and future reproduction.

Keywords

Tolerance to infection Bacterial infection Pseudomonas fluorescens Salmonidae Astaxanthin 

Notes

Acknowledgements

We are grateful to L. Benaroyo, I. Castro, P. Christe, P. Engel, G. Glauser, D. Maitre, Y. Poirier, C. Primmer, T. Reusch, A. Uppal, A. Vallat, J. van der Meer and D. Zeugin for assistance in the field and/or discussion. We thank B. Bracher and U. Gutmann from the Fishery Inspectorate Bern for catching and taking care of the adult fish, C. Küng for permissions, R. Alford and two reviewers for helpful comments, and the Swiss National Science Foundation for funding. This study complied with the relevant ethical regulations imposed by the University of Lausanne, the canton, and the country in which it was carried out.

Author contribution statement

LW, LMC and CW designed the project. LW, LMC, DN and CW sampled the fish, did the in vitro fertilizations and distributed the eggs to 24-well plates. All further manipulations and bacterial infections on the embryos were done by LW and LMC. MH measured embryo length and growth. LM, DO and VV carried out the chemical analyses, DN wrote the macros that were used by LMC to analyse the skin colouration. LW, LMC and CW performed the statistical analyses and wrote the first version of the manuscript that was then critically revised by all other authors.

Supplementary material

442_2017_3952_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1332 kb)

References

  1. Alishahi M, Karamifar M, Mesbah M (2015) Effects of astaxanthin and Dunaliella salina on skin carotenoids, growth performance and immune response of Astronotus ocellatus. Aquac Int 23:1239–1248. doi: 10.1007/s10499-015-9880-0 CrossRefGoogle Scholar
  2. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and Its commercial applications—a review. Mar Drugs 12:128–152. doi: 10.3390/md12010128 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amundsen CR, Nordeide JT, Gjoen HM, Larsen B, Egeland ES (2015) Conspicuous carotenoid-based pelvic spine ornament in three-spined stickleback populations—occurrence and inheritance. Peerj 4:1–23. doi: 10.7717/peerj.872 Google Scholar
  4. Anbazahan SM et al (2014) Immune response and disease resistance of carotenoids supplementation diet in Cyprinus carpio against Aeromonas hydrophila. Fish Shellfish Immunol 40:9–13. doi: 10.1016/j.fsi.2014.06.011 CrossRefPubMedGoogle Scholar
  5. Aykanat T, Heath JW, Dixon B, Heath DD (2012) Additive, non-additive and maternal effects of cytokine transcription in response to immunostimulation with Vibrio vaccine in Chinook salmon (Oncorhynchus tshawytscha). Immunogenetics 64:691–703. doi: 10.1007/s00251-012-0624-2 CrossRefPubMedGoogle Scholar
  6. Backström T, Brannas E, Nilsson J, Magnhagen C (2014) Behaviour, physiology and carotenoid pigmentation in Arctic charr Salvelinus alpinus. J Fish Biol 84:1–9. doi: 10.1111/jfb.12240 CrossRefPubMedGoogle Scholar
  7. Backström T, Heynen M, Brannas E, Nilsson J, Magnhagen C (2015) Dominance and stress signalling of carotenoid pigmentation in Arctic charr (Salvelinus alpinus): lateralization effects? Physiol Behav 138:52–57. doi: 10.1016/j.physbeh.2014.10.003 CrossRefPubMedGoogle Scholar
  8. Balshine S (2012) Patterns of parental care in vertebrates. Evolution of Parental Care. Oxford University Press, New YorkGoogle Scholar
  9. Barry TP, Malison JA, Held JA, Parrish JJ (1995) Ontogeny of the cortisol stress response in larval rainbow trout. Gen Comp Endocrinol 97:57–65. doi: 10.1006/Gcen.1995.1006 CrossRefPubMedGoogle Scholar
  10. Bates D, Sarkar D (2007) lme4: Linear mixed-effects models using S4 classes R package version 0.99875-6Google Scholar
  11. Bjerkeng B, Storebakken T, Liaaenjensen S (1992) Pigmentation of rainbow trout from start feeding to sexual maturation. Aquaculture 108:333–334CrossRefGoogle Scholar
  12. Black CA, Scott RJ, Bernards MA (2014) Seasonal changes in carotenoid and lipid storage by threespine stickleback, Gasterosteus aculeatus. Environ Biol Fishes 97:209–214. doi: 10.1007/s10641-013-0130-x CrossRefGoogle Scholar
  13. Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630. doi: 10.1002/Neu.20242 CrossRefPubMedGoogle Scholar
  14. Blount JD, Houston DC, Møller AP (2000) Why egg yolk is yellow. Trends Ecol Evol 15:47–49. doi: 10.1016/S0169-5347(99)01774-7 CrossRefPubMedGoogle Scholar
  15. Brazzola G, Chèvre N, Wedekind C (2014) Additive genetic variation for tolerance to estrogen pollution in natural populations of Alpine whitefish (Coregonus sp., Salmonidae). Evol Appl 7:1084–1093. doi: 10.1111/eva.12216 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brown AC, Leonard HM, McGraw KJ, Clotfelter ED (2014) Maternal effects of carotenoid supplementation in an ornamented cichlid fish (Amantitlania siquia). Funct Ecol 28:612–620. doi: 10.1111/1365-2435.12205 CrossRefGoogle Scholar
  17. Brown AC, Cahn MD, Choi S, Clotfelter ED (2016) Dietary carotenoids and bacterial infection in wild and domestic convict cichlids (Amatitlania spp.). Environ Biol Fish 99:439–449. doi: 10.1007/s10641-016-0485-x CrossRefGoogle Scholar
  18. Candolin U, Tukiainen L (2015) The sexual selection paradigm: have we overlooked other mechanisms in the evolution of male ornaments? Proc R Soc Lond B Biol Sci 282:1–9. doi: 10.1098/rspb.2015.1987 CrossRefGoogle Scholar
  19. Christiansen R, Torrissen OJ (1997) Effects of dietary astaxanthin supplementation on fertilization and egg survival in Atlantic salmon (Salmo salar L.). Aquaculture 153:51–62. doi: 10.1016/S0044-8486(97)00016-1 CrossRefGoogle Scholar
  20. Clark ES, Wilkins LGE, Wedekind C (2013) MHC class I expression dependent on bacterial infection and parental factors in whitefish embryos (Salmonidae). Mol Ecol 22:5256–5269. doi: 10.1111/mec.12457 CrossRefPubMedGoogle Scholar
  21. Clark ES, Pompini M, Marques da Cunha L, Wedekind C (2014) Maternal and paternal contributions to pathogen resistance dependent on development stage in a whitefish. Funct Ecol 28:714–723. doi: 10.1111/1365-2435.12214 CrossRefGoogle Scholar
  22. Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M (2015) The effects of life history and sexual selection on male and female plumage colouration. Nature 527:367–370. doi: 10.1038/nature15509 CrossRefPubMedGoogle Scholar
  23. Donnelly WA, Dill LM (1984) Evidence for crypsis in coho calmon, Oncorhynchus kisutch (Walbaum), parr—substrate color preference and chromatic reflectance. J Fish Biol 25:183–195. doi: 10.1111/J.1095-8649.1984.Tb04865.X CrossRefGoogle Scholar
  24. Einum S, Fleming IA (1999) Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Proc R Soc Lond B Biol Sci 266:2095–2100. doi: 10.1098/rspb.1999.0893 CrossRefGoogle Scholar
  25. Einum S, Fleming IA (2000) Highly fecund mothers sacrifice offspring survival to maximize fitness. Nature 405:565–567. doi: 10.1038/35014600 CrossRefPubMedGoogle Scholar
  26. Foote CJ, Brown GS, Hawryshyn CW (2004) Female colour and male choice in sockeye salmon: implications for the phenotypic convergence of anadromous and nonanadromous morphs. Anim Behav 67:69–83. doi: 10.1016/j.anbehav.2003.02.004 CrossRefGoogle Scholar
  27. Garner SR, Neff BD, Bernards MA (2010) Dietary carotenoid levels affect carotenoid and retinoid allocation in female Chinook salmon Oncorhynchus tshawytscha. J Fish Biol 76:1474–1490. doi: 10.1111/J.1095-8649.2010.02579.X CrossRefPubMedGoogle Scholar
  28. Goodwin TW (1984) The biochemistry of carotenoids, II. Animals. Chapman and Hall, LondonCrossRefGoogle Scholar
  29. Grether GF (2000) Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata). Evolution 54:1712–1724. doi: 10.1111/j.0014-3820.2000.tb00715.x CrossRefPubMedGoogle Scholar
  30. Ho ALFC, O’Shea SK, Pomeroy HF (2013) Dietary esterified astaxanthin effects on color, carotenoid concentrations, and composition of clown anemonefish, Amphiprion ocellaris, skin. Aquac Int 21:361–374. doi: 10.1007/s10499-012-9558-9 CrossRefGoogle Scholar
  31. Jacob A, Evanno G, von Siebenthal BA, Grossen C, Wedekind C (2010) Effects of different mating scenarios on embryo viability in brown trout. Mol Ecol 19:5296–5307. doi: 10.1111/j.1365-294X.2010.04884.x CrossRefPubMedGoogle Scholar
  32. Janhunen M, Peuhkuri N, Primmer CR, Kolari I, Piironen J (2011) Does breeding ornamentation signal genetic quality in Arctic charr, Salvelinus alpinus? Evol Biol 38:68–78. doi: 10.1007/s11692-010-9100-9 CrossRefGoogle Scholar
  33. Jensen LF, Hansen MM, Pertoldi C, Holdensgaard G, Mensberg KLD, Loeschcke V (2008) Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proc R Soc Lond B Biol Sci 275:2859–2868. doi: 10.1098/rspb.2008.0870 CrossRefGoogle Scholar
  34. Johnstone RA (1997) The evolution of animal signals, 4th edn. Wiley-Blackwell, HobokenGoogle Scholar
  35. Kim S-Y, Velando A (2016) Genetic conflict between sexual signalling and juvenile survival in the three-spined stickleback. BMC Evol Biol 16:1–7. doi: 10.1186/s12862-016-0613-4 CrossRefGoogle Scholar
  36. Kim S, Ha TY, Hwang IK (2009) Analysis, bioavailability, and potential healthy effects of capsanthin, natural red pigment from Capsicum spp. Food Rev Int 25:198–213. doi: 10.1080/87559120902956141 CrossRefGoogle Scholar
  37. Kolluru GR et al (2006) The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biol J Linn Soc 89:301–309. doi: 10.1111/J.1095-8312.2006.00675.X CrossRefGoogle Scholar
  38. Kraaijeveld K, Kraaijeveld-Smit FJL, Komdeur J (2007) The evolution of mutual ornamentation. Anim Behav 74:657–677. doi: 10.1016/j.anbehav.2006.12.027 CrossRefGoogle Scholar
  39. Krinsky NI, Yeum KJ (2003) Carotenoid-radical interactions. Biochem Biophys Res Co 305:754–760. doi: 10.1016/S0006-291x(03)00816-7 CrossRefGoogle Scholar
  40. Lozano GA (2001) Carotenoids, parasites and sexual selection. Oikos 70:309–311. doi: 10.2307/3545643 CrossRefGoogle Scholar
  41. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc., SunderlandGoogle Scholar
  42. Marshall DJ, Bonduriansky R, Bussière LF (2008) Offspring size variation within broods as a bet-hedging strategy in unpredictable environments. Ecology 89:2506–2517. doi: 10.1890/07-0267.1 CrossRefPubMedGoogle Scholar
  43. Nagler JJ, Parsons JE, Cloud JG (2000) Single pair mating indicates maternal effects on embryo survival in rainbow trout, Oncorhynchus mykiss. Aquaculture 184:177–183. doi: 10.1016/S0044-8486(99)00309-9 CrossRefGoogle Scholar
  44. Nordeide JT, Kekalainen J, Janhunen M, Kortet R (2013) Female ornaments revisited—are they correlated with offspring quality? J Anim Ecol 82:26–38. doi: 10.1111/1365-2656.12021 CrossRefPubMedGoogle Scholar
  45. Nwachukwu ID, Udenigwe CC, Aluko RE (2016) Lutein and zeaxanthin: production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol 49:74–84. doi: 10.1016/j.tifs.2015.12.005 CrossRefGoogle Scholar
  46. OECD (1992) Guideline for the testing of chemicals 203 (fish, acute toxicity test), p 9. Organisation for Economic Cooperation and Development, Paris. http://www.oecd.org
  47. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514. doi: 10.1016/s0169-5347(98)01484-0 CrossRefPubMedGoogle Scholar
  48. Pailan GH, Sardar P, Mahapatra BK (2015) Marigold petal meal: a natural carotenoid source for pigmentation in Swordtail (Xiphophorus helleri). Anim Nutrition Feed Technol 15:417–425. doi: 10.5958/0974-181X.2015.00042.6 CrossRefGoogle Scholar
  49. Palace VP, Werner J (2006) Vitamins A and E in the maternal diet influence egg quality and early life stage development in fish: a review. Sci Mar 70:41–57CrossRefGoogle Scholar
  50. Peters A (2007) Testosterone and carotenoids: an integrated view of trade-offs between immunity and sexual signalling. Bioessays 29:427–430. doi: 10.1002/Bies.20563 CrossRefPubMedGoogle Scholar
  51. Pham MA, Byun HG, Kim KD, Lee SM (2014) Effects of dietary carotenoid source and level on growth, skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture 431:65–72. doi: 10.1016/j.aquaculture.2014.04.019 CrossRefGoogle Scholar
  52. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Rice WR, Gaines SD (1994) Heads I win, tails you lose—testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol Evol 9:235–237. doi: 10.1016/0169-5347(94)90258-5 CrossRefPubMedGoogle Scholar
  54. Rivera SM, Christou P, Canela-Garayoa R (2014) Identification of carotenoids using mass spectrometry. Mass Spectrom Rev 33:353–372. doi: 10.1002/mas.21390 CrossRefPubMedGoogle Scholar
  55. Schiedt K, Vecchi M, Glinz E (1986) Astaxanthin and its metabolites in wild rainbow trout (Salmo gairdneri R.). Comp Biochem Phys B 83:9–12. doi: 10.1016/0305-0491(86)90324-X CrossRefGoogle Scholar
  56. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Seabra LMJ, Pedrosa LFC (2010) Astaxanthin: structural and functional aspects. Rev Nutr 23:1041–1050. doi: 10.1590/S1415-52732010000600010 CrossRefGoogle Scholar
  58. Sheldon BC (2000) Differential allocation: tests, mechanisms and implications. Trends Ecol Evol 15:397–402. doi: 10.1016/S0169-5347(00)01953-4 CrossRefPubMedGoogle Scholar
  59. Sorensen AE, Mellor D, Jordan RC (2016) Effect of carotenoids on cichlid phenotype and mating behavior. Ethol Ecol Evol 28:77–84. doi: 10.1080/03949370.2015.1018953 CrossRefGoogle Scholar
  60. Stelkens RB, Jaffuel G, Escher M, Wedekind C (2012) Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol Ecol 21:2896–2915. doi: 10.1111/j.1365-294X.2012.05581.x CrossRefPubMedGoogle Scholar
  61. Stephensen CB (2001) Vitamin A, infection, and immune function. Annu Rev Nutr 21:167–192. doi: 10.1146/Annurev.Nutr.21.1.167 CrossRefPubMedGoogle Scholar
  62. Steven DM (1949) Studies on animal carotenoids. 2. Carotenoids in the reproductive cycle of the brown trout. J Exp Biol 26:295–303Google Scholar
  63. Svensson PA, Pelabon C, Blount JD, Surai PF, Amundsen T (2006) Does female nuptial coloration reflect egg carotenoids and clutch quality in the Two-Spotted Goby (Gobiusculus flavescens, Gobiidae). Funct Ecol 20:689–698. doi: 10.1111/j.1365-2435.2006.01151.x CrossRefGoogle Scholar
  64. Svensson PA, Blount JD, Forsgren E, Amundsen T (2009) Female ornamentation and egg carotenoids of six sympatric gobies. J Fish Biol 75:2777–2787. doi: 10.1111/j.1095-8649.2009.02478.x CrossRefPubMedGoogle Scholar
  65. Thomas DB, McGraw KJ, Butler MW, Carrano MT, Madden O, James HF (2014) Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc R Soc Lond B Biol Sci 281:1–9. doi: 10.1098/rspb.2014.0806 CrossRefGoogle Scholar
  66. Tyndale ST, Letcher RJ, Heath JW, Heath DD (2008) Why are salmon eggs red? Egg carotenoids and early life survival of Chinook salmon (Oncorhynchus tshawytscha). Evol Ecol Res 10:1187–1199Google Scholar
  67. van den Berg H et al (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912. doi: 10.1002/(SICI)1097-0010(20000515)80:7<880:AID-JSFA646>3.0.CO;2-1 CrossRefGoogle Scholar
  68. von Siebenthal BA, Jacob A, Wedekind C (2009) Tolerance of whitefish embryos to Pseudomonas fluorescens linked to genetic and maternal effects, and reduced by previous exposure. Fish Shellfish Immunol 26:531–535. doi: 10.1016/j.fsi.2009.02.008 CrossRefGoogle Scholar
  69. Wedekind C, Meyer P, Frischknecht M, Niggli UA, Pfander H (1998) Different carotenoids and potential information content of red coloration of male three-spined stickleback. J Chem Ecol 24:787–801. doi: 10.1023/A:1022365315836 CrossRefGoogle Scholar
  70. Wedekind C, Walker M, Portmann J, Cenni B, Müller R, Binz T (2004) MHC-linked susceptibility to a bacterial infection, but no MHC- linked cryptic female choice in whitefish. J Evol Biol 17:11–18. doi: 10.1046/j.1420-9101.2004.00669.x CrossRefPubMedGoogle Scholar
  71. Wedekind C, Jacob A, Evanno G, Nusslé S, Müller R (2008) Viability of brown trout embryos positively linked to melanin-based but negatively to carotenoid-based colours of their fathers. Proc R Soc Lond B Biol Sci 275:1737–1744. doi: 10.1098/rspb.2008.0072 CrossRefGoogle Scholar
  72. Westley PAH, Stanley R, Fleming IA (2013) Experimental tests for heritable morphological color plasticity in non-native brown trout (Salmo trutta) populations. PLoS One. doi: 10.1371/journal.pone.0080401 Google Scholar
  73. Wilkins LGE, Rogivue A, Schütz F, Fumagalli L, Wedekind C (2015) Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures. Sci Rep 5:1–15. doi: 10.1038/srep17084 CrossRefGoogle Scholar
  74. Wilkins LGE, Fumagalli L, Wedekind C (2016) Effects of host genetics and environment on egg-associated microbiotas in brown trout (Salmo trutta). Mol Ecol 25:4930–4945. doi: 10.1111/mec.13798 CrossRefPubMedGoogle Scholar
  75. Wilkins LGE, Marques da Cunha L, Glauser G, Vallat A, Wedekind C (2017) Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos (Salmo trutta). Ecol Evol. 7:1–12. doi: 10.1002/ece3.3076 CrossRefGoogle Scholar
  76. Yi XW et al (2015) Effects of dietary xanthophylls/astaxanthin ratios on the growth and skin pigmentation of large yellow croaker Larimichthys crocea (Richardson, 1846). J Appl Ichthyol 31:780–786. doi: 10.1111/jai.12763 CrossRefGoogle Scholar
  77. Yuan JP, Peng JA, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165. doi: 10.1002/mnfr.201000414 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
  2. 2.Department of Environmental Sciences, Policy and Management, 130 Mulford Hall #3114University of CaliforniaBerkeleyUSA
  3. 3.Institute of Chemical Sciences and Engineering ISIC, Batochime, EPFLLausanneSwitzerland

Personalised recommendations