Advertisement

Oecologia

, Volume 185, Issue 3, pp 427–435 | Cite as

Dynamic foraging of a top predator in a seasonal polar marine environment

  • Ben G. WeinsteinEmail author
  • Ari S. Friedlaender
Behavioral ecology –original research

Abstract

The seasonal movement of animals at broad spatial scales provides insight into life-history, ecology and conservation. By combining high-resolution satellite-tagged data with hierarchical Bayesian movement models, we can associate spatial patterns of movement with marine animal behavior. We used a multi-state mixture model to describe humpback whale traveling and area-restricted search states as they forage along the West Antarctic Peninsula. We estimated the change in the geography, composition and characteristics of these behavioral states through time. We show that whales later in the austral fall spent more time in movements associated with foraging, traveled at lower speeds between foraging areas, and shifted their distribution northward and inshore. Seasonal changes in movement are likely due to a combination of sea ice advance and regional shifts in the primary prey source. Our study is a step towards dynamic movement models in the marine environment at broad scales.

Keywords

Antarctica Antarctic krill Bayesian movement model Humpback whales Sea ice 

Notes

Acknowledgements

Research was supported by Antarctic Wildlife Research Fund (ANT-0823101), NSF OPP National Science Foundation ANT-0823101, 1250208, and 1440435, International Whaling Commission, and the Southern Ocean Research Partnership awards under permits: NMFS 14907, 14809, and 14856, ACA Permits 2009-013 and 2015-011, Duke University IACUC A049-122-02 and OSU ACUP 4513. We are grateful to the Australian Antarctic Division for their support of this research, with special thanks to Nick Gales, Mike Double, Elanor Bell, and Virginia Andrews-Goff. Thanks to Rodolfo Werner for his stimulating feedback. Source code and data visualizations are available on github (https://bw4sz.github.io/WhaleShape/).

Author contribution statement

AF designed the sampling and collected the data. BW analyzed the data. BW and AF wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

442_2017_3949_MOESM1_ESM.docx (439 kb)
Supplementary material 1 (DOCX 438 kb)

References

  1. Bartlam-Brooks HLA, Beck PSA, Bohrer G, Harris S (2013) In search of greener pastures: using satellite images to predict the effects of environmental change on zebra migration. J Geophys Res Biogeosci 118:1427–1437. doi: 10.1002/jgrg.20096 CrossRefGoogle Scholar
  2. Bauer S, Klaassen M (2013) Mechanistic models of animal migration behaviour—their diversity, structure and use. J Anim Ecol 82:498–508. doi: 10.1111/1365-2656.12054 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bestley S, Jonsen ID, Hindell MA et al (2013) Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator. Proc R Soc B Biol Sci 280:2012–2262. doi: 10.1098/rspb.2012.2262 Google Scholar
  4. Bestley S, Jonsen ID, Hindell MA et al (2015) Taking animal tracking to new depths: synthesizing horizontal–vertical movement relationships for four marine predators. Ecology 96:417–427. doi: 10.1890/14-0469.1 CrossRefPubMedGoogle Scholar
  5. Brierley AS (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 80(295):1890–1892. doi: 10.1126/science.1068574 CrossRefGoogle Scholar
  6. Curtice C, Johnston DW, Ducklow HW et al (2015) Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula. Mov Ecol 3:13. doi: 10.1186/s40462-015-0041-x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Friedlaender AS, Tyson RB, Stimpert AK et al (2013) Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Mar Ecol Prog Ser 494:281–289. doi: 10.3354/meps10541 CrossRefGoogle Scholar
  8. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  9. Goldbogen JA, Calambokidis J, Croll DA et al (2008) Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J Exp Biol 211:3712–3719. doi: 10.1242/jeb.023366 CrossRefPubMedGoogle Scholar
  10. Gurarie E, Bracis C, Delgado M et al (2016) What is the animal doing? Tools for exploring behavioural structure in animal movements. J Anim Ecol 85:69–84. doi: 10.1111/1365-2656.12379 CrossRefPubMedGoogle Scholar
  11. Herr H, Viquerat S, Siegel V et al (2016) Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey. Polar Biol 39:799–818. doi: 10.1007/s00300-016-1927-9 CrossRefGoogle Scholar
  12. Janson CH (1998) Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Anim Behav 55:1229–1243. doi: 10.1006/anbe.1997.0688 CrossRefPubMedGoogle Scholar
  13. Jonsen I (2016) Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci Rep 6:20625. doi: 10.1038/srep20625 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jonsen ID, Flemming J, Myers R (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880CrossRefGoogle Scholar
  15. Kawaguchi S, Nicol S (2007) Learning about Antarctic krill from the fishery. Antarct Sci 19:219. doi: 10.1017/S0954102007000296 CrossRefGoogle Scholar
  16. Levey DJDDJ, Stiles FG (1992) The University of Chicago evolutionary precursors of long-distance migration: resource availability and movement patterns in neotropical landbirds. Am Nat 140:447–476. doi: 10.1086/285421 CrossRefGoogle Scholar
  17. McClintock BT, King R, Thomas L et al (2012) A general discrete-time modeling framework for animal movement using multistate random walks. Ecol Monogr 82:335–349. doi: 10.1890/11-0326.1 CrossRefGoogle Scholar
  18. Nicol S (2006) Krill, currents, and sea ice: euphausia superba and its changing environment. Bioscience 56:111. doi:10.1641/0006-3568(2006)056[0111:KCASIE]2.0.CO;2Google Scholar
  19. Nicol S, Foster J (2016) The fishery for Antarctic krill: its current status and management regime. In: Siegel V (ed) Biology and ecology of Antarctic krill. Springer, Cham, pp 387–421CrossRefGoogle Scholar
  20. Nowacek DP, Friedlaender AS, Halpin PN et al (2011) Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. PLoS ONE 6:2–6. doi: 10.1371/journal.pone.0019173 CrossRefGoogle Scholar
  21. Obryk MK, Doran PT, Friedlaender AS et al (2016) Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. Bioscience 66:864–879. doi: 10.1093/biosci/biw109 CrossRefGoogle Scholar
  22. Papeş M, Peterson AT, Powell GVN (2012) Vegetation dynamics and avian seasonal migration: clues from remotely sensed vegetation indices and ecological niche modelling. J Biogeogr 39:652–664. doi: 10.1111/j.1365-2699.2011.02632.x CrossRefGoogle Scholar
  23. Patterson TA, Thomas L, Wilcox C et al (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94. doi: 10.1016/j.tree.2007.10.009 CrossRefPubMedGoogle Scholar
  24. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proc Third Int Work Distrib Stat Comput 124:1–10 Google Scholar
  25. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  26. Tarling GA, Klevjer T, Fielding S et al (2009) Variability and predictability of Antarctic krill swarm structure. Deep Res Part I Oceanogr Res Pap 56:1994–2012. doi: 10.1016/j.dsr.2009.07.004 CrossRefGoogle Scholar
  27. Temeles E, Goldman R, Kudla A, Stouffer P (2005) Foraging and territory economics of sexually dimorphic purple-throated caribs (Eulampis jugularis) on three Heliconia morphs. Auk 122:187–204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Fisheries and Wildlife, Marine Mammal InstituteOregon State UniversityNewportUSA

Personalised recommendations