, Volume 184, Issue 4, pp 763–766 | Cite as

Inferring foliar water uptake using stable isotopes of water

  • Gregory R. GoldsmithEmail author
  • Marco M. Lehmann
  • Lucas A. Cernusak
  • Matthias Arend
  • Rolf T. W. Siegwolf
Views and Comments


A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.


Fog Isotope dendrochronology Leaf wetting Plant–water relations Stomata 



We thank L. Schmid for laboratory assistance and the reviewers for constructive comments. This research was funded through SNF (31003A_153428/1) and the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant agreement Number 290605 (COFUND: PSI-FELLOW).

Author contributions statement

GRG and RS conceived of the project. GRG, MML, and LC performed the research with assistance from MA. GRG analyzed the data and wrote the paper with contributions from all the authors.

Supplementary material

442_2017_3917_MOESM1_ESM.pdf (37 kb)
Supplementary material 1 (PDF 37 kb)


  1. Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:1–17. doi: 10.1029/2007JG000613 CrossRefGoogle Scholar
  2. Baguskas SA, Still CJ, Fischer DT, D’Antonio CM, King JY (2016) Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest. Oecologia 18:1–12. doi: 10.1007/s00442-016-3556-y Google Scholar
  3. Berry ZC, Smith WK (2014) Experimental cloud immersion and foliar water uptake in saplings of Abies fraseri and Picea rubens. Trees. doi: 10.1007/s00468-013-0934-5 Google Scholar
  4. Berry ZC, Hughes NM, Smith WK (2013) Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains. Oecologia 174:319–326. doi: 10.1007/s00442-013-2770-0 CrossRefPubMedGoogle Scholar
  5. Berry ZC, White JC, Smith WK (2014) Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiol 34:459–470. doi: 10.1093/treephys/tpu032 CrossRefPubMedGoogle Scholar
  6. Breshears D, McDowell N, Goddard K, Dayem K, Martens S, Meyer C, Brown K (2008) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89:41–47. doi: 10.1890/07-0437.1 CrossRefPubMedGoogle Scholar
  7. Burgess S, Dawson T (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27:1023–1034. doi: 10.1111/j.1365-3040.2004.01207.x CrossRefGoogle Scholar
  8. Burkhardt J, Basi S, Pariyar S, Hunsche M (2012) Stomatal penetration by aqueous solutions—an update involving leaf surface particles. New Phytol 196:774–787. doi: 10.1111/j.1469-8137.2012.04307.x CrossRefPubMedGoogle Scholar
  9. Cassana FF, Eller CB, Oliveira RS, Dillenburg LR (2015) Effects of soil water availability on foliar water uptake of Araucaria angustifolia. Plant Soil 399:147–157. doi: 10.1007/s11104-015-2685-0 CrossRefGoogle Scholar
  10. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca RatonGoogle Scholar
  11. Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Consiglio Nazionale Delle Richere, Pisa, pp 9–130Google Scholar
  12. Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52CrossRefPubMedGoogle Scholar
  13. Earles JM, Sperling O, Silva LCR, McElrone AJ, Brodersen CR, North MP, Zwieniecki MA (2016) Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant Cell Environ 39:320–328. doi: 10.1111/pce.12612 CrossRefGoogle Scholar
  14. Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199:151–162. doi: 10.1111/nph.12248 CrossRefPubMedGoogle Scholar
  15. Eller CB, Lima AL, Oliveira RS (2016) Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol 211:489–501. doi: 10.1111/nph.13952 CrossRefPubMedGoogle Scholar
  16. Emery NC (2016) Foliar uptake of fog in coastal California shrub species. Oecologia 182:731–742. doi: 10.1007/s00442-016-3712-4 CrossRefPubMedGoogle Scholar
  17. Fischer DT, Still CJ, Ebert CM, Baguskas SA (2016) Fog drip maintains dry season ecological function in a California coastal pine forest. Ecosphere. doi: 10.1002/ecs2.1364 Google Scholar
  18. Fu PL, Liu WJ, Fan ZX, Cao KF (2016) Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season? Ecohydrology 9:964–972. doi: 10.1002/eco.1694 CrossRefGoogle Scholar
  19. Goldsmith GR (2013) Changing directions: the atmosphere–plant–soil continuum. New Phytol 199:4–6. doi: 10.1111/nph.12332 CrossRefPubMedGoogle Scholar
  20. Goldsmith GR, Matzke NJ, Dawson TE (2013) The incidence and implications of clouds for cloud forest plant water relations. Ecol Lett 16:307–314. doi: 10.1111/ele.12039 CrossRefPubMedGoogle Scholar
  21. Goldsmith GR, Lehmann MM, Cernusak LA, Arend M, Siegwolf RTW (2017) Data from: Goldsmith et al.-inferring foliar water uptake using stable isotopes of water. Knowl Netw Biocomplex. doi: 10.5063/F1GH9FXV Google Scholar
  22. Gotsch SG, Asbjornsen H, Holwerda F, Goldsmith GR, Weintraub AE, Dawson TE (2014) Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest. Plant Cell Environ 37:261–272. doi: 10.1111/pce.12151 CrossRefPubMedGoogle Scholar
  23. Hu J, Riveros-Iregui DA (2016) Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia 180:1061–1073. doi: 10.1007/s00442-015-3533-x CrossRefPubMedGoogle Scholar
  24. Kim K, Lee X (2011) Transition of stable isotope ratios of leaf water under simulated dew formation. Plant Cell Environ 34:1790–1801. doi: 10.1111/j.1365-3040.2011.02375.x CrossRefPubMedGoogle Scholar
  25. Lange OL, Lösch R, Schulze ED, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100:76–86. doi: 10.1007/BF00386887 CrossRefPubMedGoogle Scholar
  26. Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–459. doi: 10.1007/s00442-009-1400-3 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Malhi Y, Girardin CAJ, Goldsmith GR, Doughty CE, Salinas N, Metcalfe DB, Huaraca Huasco W, Silva-Espejo JE, Aguilla Pasquell J, Farfan-Amezquita F, Aragão LEOC, Guerrieri R, Yoko Ishida F, Bahar NHA, Farfan-Rios W, Phillips OL, Meir P, Silman M (2017) The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol 214:1019–1032. doi: 10.1111/nph.14189 CrossRefPubMedGoogle Scholar
  28. Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Dämon B, Hacke UG (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164:1731–1740. doi: 10.1104/pp.114.236646 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oliveira RS, Eller CB, Bittencourt P (2014) The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann Bot 119:909–920. doi: 10.1093/aob/mcu060 CrossRefGoogle Scholar
  30. Schwerbrock R, Leuschner C (2017) Foliar water uptake, a widespread phenomenon in temperate woodland ferns? Plant Ecol. doi: 10.1007/s11258-017-0711-4 Google Scholar
  31. Simonin KA, Santiago LS, Dawson TE (2009) Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant Cell Environ 32:882–892. doi: 10.1111/j.1365-3040.2009.01967.x CrossRefPubMedGoogle Scholar
  32. Vesala T, Sevanto S, Grönholm T, Salmon Y, Nikinmaa E, Hari P, Hölttä T (2017) Effect of leaf water potential on internal humidity and CO2 dissolution: reverse transpiration and improved water use efficiency under negative pressure. Front Plant Sci 8:1399–1410. doi: 10.3389/fpls.2017.00054 CrossRefGoogle Scholar
  33. Zhu M, Stott L, Buckley B, Yoshimura K (2012) 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Clim Change 115:505–517. doi: 10.1007/s10584-012-0439-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gregory R. Goldsmith
    • 1
    • 2
    Email author
  • Marco M. Lehmann
    • 1
    • 3
  • Lucas A. Cernusak
    • 4
  • Matthias Arend
    • 3
    • 5
  • Rolf T. W. Siegwolf
    • 1
    • 3
  1. 1.Laboratory for Atmospheric Chemistry, Ecosystem Fluxes GroupPaul Scherrer InstituteVilligenSwitzerland
  2. 2.Schmid College of Science and TechnologyChapman UniversityOrangeUSA
  3. 3.Forest DynamicsSwiss Federal Research Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  4. 4.College of Science and EngineeringJames Cook UniversityCairnsAustralia
  5. 5.Department of Environmental Sciences-BotanyUniversity of BaselBaselSwitzerland

Personalised recommendations