, Volume 184, Issue 4, pp 873–884 | Cite as

Competition and coexistence in a small carnivore guild

  • Jacques de Satgé
  • Kristine Teichman
  • Bogdan Cristescu
Community ecology – original research


The potential for strong competition among small sympatric carnivores results in a need for coexistence strategies whereby competitors partition along spatial, temporal and dietary axes as a means to reduce ecological overlaps. We determined spatial and temporal partitioning patterns of a guild of small African carnivores: the African wildcat Felis silvestris lybica, grey mongoose Galerella pulverulenta, small-spotted genet Genetta genetta, striped polecat Ictonyx striatus, and the yellow mongoose Cynictis penicillata. We quantified the degree of spatial and temporal co-occurrence of the small carnivores using camera trap data over a year-long period. Carnivores separated into two temporal groups: nocturnal species (wildcat, polecat and genet) and diurnal species (mongooses). In addition, carnivores within the same temporal group had strong patterns of reduced spatial co-occurrence. The smaller bodied carnivores showed lower co-occurrence with the larger bodied African wildcat than expected by chance, supporting the idea of dominant competitor avoidance. Thus, small carnivores likely minimise competitive interactions through spatio-temporal habitat partitioning.


Biodiversity hotspot Spatial partitioning Temporal partitioning Diel cycle Succulent Karoo 



We thank The Cape Leopard Trust, Conservation South Africa and South African National Parks for logistical and/or funding support throughout the project. This research received funding from Woolworths Holdings Limited and ABAX Foundation. Afrihost, Bridgestone, K-Way and Supa Quick provided in kind assistance. KJT was supported by the Natural Sciences and Engineering Research Council Canada Graduate Scholarship—Doctoral at the University of British Columbia and BC was supported by a Claude Leon Foundation postdoctoral fellowship at the University of Cape Town. Karoo PEACE (Predator Ecology And Coexistence Experiment) team volunteers assisted with data collection and processing. We are grateful to Namaqua National Park employees and private land owners around the park for allowing us to carry out the study on their property. Additionally, we thank Professor Herwig Leirs of the University of Antwerp for his feedback on an earlier version of the manuscript.

Author contribution statement

JDS, KT and BC originally formulated the idea, BC and KT developed the field methodology and protocol, JDS, BC and KT developed the statistical methodology, JDS analysed the data, JDS and BC wrote the manuscript, and KT provided editorial advice.

Compliance with ethical standards

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Apps P (ed) (2000) Smithers’ mammals of southern Africa. Struik, Cape TownGoogle Scholar
  2. Bischof R, Ali H, Kabir M et al (2014) Being the underdog: an elusive small carnivore uses space with prey and time without enemies. J Zool 293:40–48. doi: 10.1111/jzo.12100 CrossRefGoogle Scholar
  3. Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science (80-) 295:2273–2276. doi: 10.1126/science.1067994 CrossRefGoogle Scholar
  4. Carbone C, Christie S, Conforti K et al (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv 4:75–79. doi: 10.1017/S1367943002002172 CrossRefGoogle Scholar
  5. Caro TM, Stoner CJ (2003) The potential for interspecific competition among African carnivores. Biol Conserv 110:67–75. doi: 10.1016/S0006-3207(02)00177-5 CrossRefGoogle Scholar
  6. Cavallini P (1993) Spatial organisation of the yellow mongoose Cynictis penicillata in a coastal area. Ethology, Ecol Evol 5:501–509Google Scholar
  7. Cavallini P, Nel JAJ (1990) Ranging behaviour of the Cape grey mongoose Galerella pulverulenta in a coastal area. J Zool London 222:352–362CrossRefGoogle Scholar
  8. Cavallini P, Nel JAJ (1995) Comparative behaviour and ecology of two sympatric mongoose species (Cynictis penicillata and Galerella pulverulenta). S Afr J Zool 30:46–49CrossRefGoogle Scholar
  9. Chiang PJ, Pei KJC, Vaughan MR, Li CF (2012) Niche relationships of carnivores in a subtropical primary forest in southern Taiwan. Zool Stud 51:500–511Google Scholar
  10. Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum, New JerseyGoogle Scholar
  11. Cristescu B, Bernard RTF, Krause J (2013) Partitioning of space, habitat, and timing of activity by large felids in an enclosed South African system. J Ethol 31:285–298. doi: 10.1007/s10164-013-0376-y CrossRefGoogle Scholar
  12. Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review. Wildl Soc Bull 27:571–581Google Scholar
  13. Davis ML, Kelly MJ, Stauffer DF (2010) Carnivore co-existence and habitat use in the Mountain Pine Ridge Forest Reserve, Belize. Anim Conserv. doi: 10.1111/j.1469-1795.2010.00389.x Google Scholar
  14. Desmet PG (2007) Namaqualand—a brief overview of the physical and floristic environment. J Arid Environ 70:570–587. doi: 10.1016/j.jaridenv.2006.11.019 CrossRefGoogle Scholar
  15. Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol 36:403–412. doi: 10.1016/j.actao.2010.04.001 CrossRefGoogle Scholar
  16. Do Linh San E, Cavallini P (2015) Herpestes pulverulentus. The IUCN Red List of Threatened Species 2015: e.T41600A45205999. doi:10.2305/IUCN.UK.2015-4.RLTS.T41600A45205999.en. Accessed 9 May 2017Google Scholar
  17. Do Linh San E, Cavallini P, Taylor P (2015) Cynictis penicillata. The IUCN Red List of Threatened Species 2015: e.T41597A45205726. doi:10.2305/IUCN.UK.2015-4.RLTS.T41597A45205726.en. Accessed 9 May 2017Google Scholar
  18. Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in carnivora. Am Nat 167:524–536. doi: 10.1086/501033 CrossRefPubMedGoogle Scholar
  19. Durant SM, Craft ME, Foley C et al (2010) Does size matter? An investigation of habitat use across a carnivore assemblage in the Serengeti, Tanzania. J Anim Ecol 79:1012–1022. doi: 10.1111/j.1365-2656.2010.01717.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edwards S, Gange AC, Wiesel I (2016) An oasis in the desert: the potential of water sources as camera trap sites in arid environments for surveying a carnivore guild. J Arid Environ 124:304–309. doi: 10.1016/j.jaridenv.2015.09.009 CrossRefGoogle Scholar
  21. Fedriani JM, Fuller TK, Sauvajot RM, York EC (2000) Competition and intraguild predation among three sympatric carnivores. Oecologia 125:258–270. doi: 10.1007/s004420000448 CrossRefPubMedGoogle Scholar
  22. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621. doi:10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2Google Scholar
  23. Grassel SM, Rachlow JL, Williams CJ (2015) Spatial interactions between sympatric carnivores: asymmetric avoidance of an intraguild predator. Ecol Evol 5:2762–2773. doi: 10.1002/ece3.1561 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hardin G (1960) The competitive exclusion principle. Science (80-) 131:1292–1297. doi: 10.1126/science.131.3409.1292 CrossRefGoogle Scholar
  25. Hayward MW, Marlow N (2014) Will dingoes really conserve wildlife and can our methods tell? J Appl Ecol 51:835–838. doi: 10.1111/1365-2664.12250 CrossRefGoogle Scholar
  26. Heilbrun RD, Silvy NJ, Peterson MJ et al (2006) Estimating bobcat abundance using automatically triggered cameras. Wildl Soc Bull 34:69–73. doi:10.2193/0091-7648(2006)34[69:EBAUAT]2.0.CO;2Google Scholar
  27. Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:745–764. doi: 10.1086/286018 CrossRefGoogle Scholar
  28. Hunter J, Caro T (2008) Interspecific competition and predation in American carnivore families. Ethol Ecol Evol 20:295–324. doi: 10.1080/08927014.2008.9522514 CrossRefGoogle Scholar
  29. Jácomo ATA, Silveira L, Diniz-Filho JAF (2004) Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in central Brazil. J Zool Lond 262:99–106. doi: 10.1017/S0952836903004473 CrossRefGoogle Scholar
  30. Kamler JF, Stenkewitz U, Klare U et al (2012) Resource partitioning among cape foxes, bat-eared foxes, and black-backed jackals in South Africa. J Wildl Manage 76:1241–1253. doi: 10.1002/jwmg.354 CrossRefGoogle Scholar
  31. Kitchen AM, Gese EM, Schauster ER (1999) Resource partitioning between coyotes and swift foxes: space, time and diet. Can J Zool 77:1645–1656. doi: 10.1139/z99-143 CrossRefGoogle Scholar
  32. Kok OB, Nel JAJ (2004) Convergence and divergence in prey of sympatric canids and felids: opportunism or phylogenetic constraint? Biol J Linn Soc 83:527–538. doi: 10.1111/j.1095-8312.2004.00409.x CrossRefGoogle Scholar
  33. Lariviere S (2002) Ictonyx striatus. Mamm Species. doi: 10.1644/1545-1410(2002)698%3C0001:IS%3E2.0.CO;2 Google Scholar
  34. Lariviere S, Calzada J (2001) Genetta genetta. Mamm Species. doi: 10.1644/1545-1410(2001)680%3C0001:GG%3E2.0.CO;2 Google Scholar
  35. Laundre JW, Hernandez L, Ripple WJ (2010) The landscape of fear: ecological implications of being afraid. Open Ecol J 3:1–7. doi: 10.2174/1874213001003030001 CrossRefGoogle Scholar
  36. Le Roux JJ, Foxcroft LC, Herbst M, MacFadyen S (2015) Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F. s. catus) in South Africa. Ecol Evol 5:288–299. doi: 10.1002/ece3.1275 CrossRefPubMedGoogle Scholar
  37. Linnell JDC, Strand O (2000) Interference interactions, co-existence and conservation of mammalian carnivores. Divers Distrib 6:169–176. doi: 10.1046/j.1472-4642.2000.00069.x CrossRefGoogle Scholar
  38. Lucherini M, Reppucci JI, Walker RS et al (2009) Activity pattern segregation of carnivores in the high Andes. J Mammal 90:1404–1409. doi: 10.1644/09-MAMM-A-002R.1 CrossRefGoogle Scholar
  39. Lund AU, Agostinelli C (2013) Circular Statistics: R package version 0.4-7. Accessed 12 Sept 2015
  40. Luther-Mosebach J, Dengler J, Schmiedel U et al (2012) A first formal classification of the hardeveld vegetation in Namaqualand, South Africa. Appl Veg Sci 15:401–431. doi: 10.1111/j.1654-109X.2011.01173.x CrossRefGoogle Scholar
  41. Monterroso P, Alves PC, Ferreras P (2014) Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol 68:1403–1417. doi: 10.1007/s00265-014-1748-1 CrossRefGoogle Scholar
  42. Munuera DC, Llobet FL (2004) Space use of common genets Genetta genetta in a Mediterranean habitat of northeastern Spain: differences between sexes and seasons. Acta Theriol (Warsz) 49:491–502CrossRefGoogle Scholar
  43. Nowell K, Jackson P (1996) African wildcat Felis silvestris, lybica group. Wild Cats: status survey and conservation action plan. IUCN/SSC Cat Specialist Group, Gland, pp 32–36Google Scholar
  44. Palmer R, Fairall N (1988) Caracal and African wild cat diet in the Karoo National Park and the implications thereof for hyrax. S Afr J Wildl Res 18:30–34Google Scholar
  45. Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508. doi: 10.1086/303189 CrossRefGoogle Scholar
  46. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330. doi: 10.1146/ CrossRefGoogle Scholar
  47. R Core Team (2017) R: A language and environment for statistical computing.
  48. Ramesh T, Kalle R, Sankar K, Qureshi Q (2012) Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J Zool 287:269–275. doi: 10.1111/j.1469-7998.2012.00908.x CrossRefGoogle Scholar
  49. Root RB (1967) The niche exploitation pattern of the blue-gray gnatcatcher. Ecol Monogr 37:317–350CrossRefGoogle Scholar
  50. Schoener TW (1974) Resource partitioning in ecological communities. Science (80-) 185:27–39. doi: 10.1126/science.185.4145.27 CrossRefGoogle Scholar
  51. Schuette P, Wagner AP, Wagner ME, Creel S (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol Conserv 158:301–312. doi: 10.1016/j.biocon.2012.08.008 CrossRefGoogle Scholar
  52. Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Syst 22:115–143. doi: 10.1146/ CrossRefGoogle Scholar
  53. Skinner JD, Chimimba CT (2005) The mammals of the southern African sub-region, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. Sollmann R, Mohamed A, Samejima H, Wilting A (2013) Risky business or simple solution—relative abundance indices from camera-trapping. Biol Conserv 159:405–412. doi: 10.1016/j.biocon.2012.12.025 CrossRefGoogle Scholar
  55. Steinmetz R, Seuaturien N, Chutipong W (2013) Tigers, leopards, and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivores. Biol Conserv 163:68–78. doi: 10.1016/j.biocon.2012.12.016 CrossRefGoogle Scholar
  56. Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79. doi: 10.1007/BF00317345 CrossRefPubMedGoogle Scholar
  57. Stuart C, Stuart M, Do Linh San E (2015) Ictonyx striatus. The IUCN Red List of Threatened Species 2015: e.T41646A45212491. Accessed 9 May 2017
  58. Sunarto S, Kelly MJ, Parakkasi K, Hutajulu MB (2015) Cat coexistence in central Sumatra: ecological characteristics, spatial and temporal overlap, and implications for management. J Zool. doi: 10.1111/jzo.12218 Google Scholar
  59. Tobler MW, Carrillo-Percastegui SE, Leite Pitman R et al (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178. doi: 10.1111/j.1469-1795.2008.00169.x CrossRefGoogle Scholar
  60. Treves A, Mwima P, Plumptre AJ, Isoke S (2010) Camera-trapping forest-woodland wildlife of western Uganda reveals how gregariousness biases estimates of relative abundance and distribution. Biol Conserv 143:521–528. doi: 10.1016/j.biocon.2009.11.025 CrossRefGoogle Scholar
  61. UNESCO (2016) Succulent Karoo protected areas. Accessed 3 Oct 2016
  62. Zhang J, Hao Z, Song B et al (2009) Fine-scale species co-occurrence patterns in an old-growth temperate forest. For Ecol Manage 257:2115–2120. doi: 10.1016/j.foreco.2009.02.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of AntwerpAntwerpBelgium
  2. 2.Department of BiologyUniversity of British ColumbiaVancouverCanada
  3. 3.The Cape Leopard TrustCape TownSouth Africa
  4. 4.Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations