, Volume 184, Issue 4, pp 847–857 | Cite as

How does synchrony with host plant affect the performance of an outbreaking insect defoliator?

  • Alvaro FuentealbaEmail author
  • Deepa Pureswaran
  • Éric Bauce
  • Emma Despland
Plant-microbe-animal interactions - original research


Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.


Phenology Phytochemistry Climate change Spruce budworm Black spruce 



We are grateful to R. Quezada-Garcia, M. Charest, P. Huron, S. Flores, S. Sagne, O. Massicotte-Dagenais, M.-H. Chabot, M. Bourgouin and N. Giasson for help in the field and laboratory. We are also thankful to H. Crepeau for advice on statistical analysis and to Rob Johns (Canadian Forest Service) and three anonymous reviewers for their very helpful comments on an earlier version of this manuscript. Financial support was provided by the Fonds de Recherche du Québec—Nature et Technologies (FQRNT), and by Ontario Ministry of Natural Resources, and Forest Protection Limited (FPL) through SERG-International.

Author contribution statement

AF, DP, ÉB and ED conceived and design the experiments. AF performed the experiments and analyzed the data. AF wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Supplementary material

442_2017_3914_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2451 kb)


  1. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16CrossRefGoogle Scholar
  2. Bauce É (1996) One and two years impact of commercial thinning on spruce budworm feeding ecology and host tree foliage production and chemistry. For Chron 72:393–398CrossRefGoogle Scholar
  3. Bauce É, Crepin M, Carisey N (1994) Spruce budworm growth, development and food utilization on young and old balsam fir trees. Oecologia 97:499–507CrossRefPubMedGoogle Scholar
  4. Blais JR (1957) Some relationships of the spruce budworm, Choristoneura fumiferana (Clem.) to black spruce, Picea mariana (Moench) Voss. For Chron 13:364–372CrossRefGoogle Scholar
  5. Bouchard M, Auger I (2014) Influence of environmental factors and spatio-temporal covariates during the initial development of spruce budworm outbreak. Landsc Ecol 29:111–126CrossRefGoogle Scholar
  6. Bronson DR, Gower ST, Tanner M, Herk IV (2009) Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob Chang Biol 15:1534–1543CrossRefGoogle Scholar
  7. Butt C, Quiring D, Hébert C, Delisle J, Berthiaume Bauce É, Royer L (2010) Influence of balsam fir (Abies balsamea) budburst phenology on hemlock looper (Lambdina fiscellaria). Entomol Exp Appl 134:220–226CrossRefGoogle Scholar
  8. Campbell C, van Frankenhuyzen K, Smith S (2007) Incubation period, spore egestion and horizontal transmission of Nosema fumiferanae (Microsporidia: Nosematidae) in spruce budworm (Choristoneura sp., Lepidoptera: Tortricidae): The role of temperature and dose. J Invert Path 94:204–210CrossRefGoogle Scholar
  9. Carisey N, Bauce É (2002) Does nutrition-related stress carry over to spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) progeny? Bull Entomol Res 92:101–108CrossRefPubMedGoogle Scholar
  10. Carroll AL (1999) Physiological adaptation to temporal variation in conifer foliage by a caterpillar. Can Entomol 131:659–669CrossRefGoogle Scholar
  11. Desbiens M (2006) Relation phénologique entre le débourrement des bourgeons chez le sapin baumier et l’émergence des larves de deuxième stade de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Lepidoptera: Tortricidae). MSc thesis, Department of Forestry, Université Laval, Quebec, CanadaGoogle Scholar
  12. Despland E (2017) Effects of phenological synchronization on caterpillar early-instar survival under changing climate. Can J For Res. doi: 10.1139/cjfr-2016-0537 (in press) Google Scholar
  13. Dorais LG, Kettela E (1982) Revue, par région, des techniques d’inventaire entomologique et d’évaluation des programmes de pulvérisation à grande échelle contre la tordeuse des bourgeons de l’épinette Choristoneura fumiferana (Clem.). Conseil de l’Est de la tordeuse des bourgeons de l’épinette. Rapport du comité pour la standardisation des techniques entomologiques, p. 51. Ministère de l’Énergie et des Ressources du Québec, Québec, CanadaGoogle Scholar
  14. Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects. Rec Adv Phytochem 10:1–40Google Scholar
  15. Forrest JRK (2016) Complex responses of insect phenology to climate change. Curr Opin Insect Sci 17:49–54CrossRefPubMedGoogle Scholar
  16. Fuentealba A, Bauce É (2012) Carry-over effect of host nutritional quality on performance of spruce budworm progeny. Bull Entomol Res 102:275–284CrossRefPubMedGoogle Scholar
  17. Fuentealba A, Bauce É (2016) Interspecific variation in resistance of two host tree species to spruce budworm. Acta Oecologica 70:10–20CrossRefGoogle Scholar
  18. Fuentealba A, Sagne S, Pureswaran D, Bauce É, Despland E (2017) Defining the window of opportunity for feeding initiation of by spruce budworm second instar larvae. Can J For Res (under review) Google Scholar
  19. Greenbank DO (1956) The role of climate and dispersal in the initiation of outbreaks of the spruce budworm in New Brunswick. 1. The role of climate. Can J Zool 34:453–476CrossRefGoogle Scholar
  20. Han E-N, Bauce É (1998) Timing of diapause initiation, metabolic changes and overwintering survival of the spruce budworm, Choristoneura fumiferana. Ecol Entomol 23:160–167CrossRefGoogle Scholar
  21. Harvey GT (1985) Egg weight as a factor in the overwintering survival of spruce budworm (Lepidoptera: Tortricidae) larvae. Can Entomol 117:1451–1461CrossRefGoogle Scholar
  22. Hunter MD (1990) Differential susceptibility to variable plant phenology and its role in competition between two insect herbivores on oak. Ecol Entomol 15:401–408CrossRefGoogle Scholar
  23. Hunter MD (1992) A variable insect-plant interaction: the relationship between tree budburst phenology and population levels of insect herbivores among trees. Ecol Entomol 17:91–95CrossRefGoogle Scholar
  24. Hunter AF, Lechowicz MJ (1992) Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89:316–323CrossRefPubMedGoogle Scholar
  25. Jamieson MA, Schwartzberg EG, Raffa KF, Reich PB, Lindroth RL (2015) Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Glob Chan Biol 21:2698–2710CrossRefGoogle Scholar
  26. Jones BC, Despland E (2006) Effects of synchronization with host plant phenology occur early in the larval development of a spring folivore. Can J Zoo 84:628–633CrossRefGoogle Scholar
  27. Lawrence RK, Mattson WJ, Haack RA (1997) White spruce and the spruce budworm: defining the phenological window of susceptibility. Can Entomol 129:291–318CrossRefGoogle Scholar
  28. Mageroy MH, Parent G, Germanos G, Giguère I, Delvas N, Maaroufi H, Bauce É, Bohlmann J, Mackay JJ (2015) Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. Plant J 81:68–80CrossRefPubMedGoogle Scholar
  29. Mattson WJ, Haack RA, Lawrence RK, Slocum SS (1991) Considering the nutritional ecology of the spruce budworm in its management. For Ecol Manag 39:183–210CrossRefGoogle Scholar
  30. Miller RO (1998) High-temperature oxidation: Dry ashing. In: Kalra YP (ed) Handbook and reference methods for plant analysis. CRC, New York, pp 53–56Google Scholar
  31. Nealis VG (2012) The phenological window for western spruce budworm: seasonal decline in resource quality. Agric For Entomol 14:340–347CrossRefGoogle Scholar
  32. Nealis VG (2016) Comparative ecology of conifer-feeding spruce budworms (Lepidoptera: Tortricidae). Can Entomol 148(S1):S33–S57CrossRefGoogle Scholar
  33. Nealis VG, Régnière J (2004) Fecundity and recruitment of eggs during outbreaks of the spruce budworm. Can Entomol 136:591–604CrossRefGoogle Scholar
  34. Neau M (2014) Synchronisme phénologique d’un insecte herbivore avec ses hôtes face au changement climatique: cas de la tordeuse des bourgeons de l’épinette (Choristoneura fumiferana (Clemens)). Master thesis, Deparment of biology, Université du Québec à Montréal, Montréal, Québec, CanadaGoogle Scholar
  35. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chan Biol 13:1860–1872CrossRefGoogle Scholar
  36. Pureswaran DS, de Grandpré L, Paré D, Taylor A, Barrette M, Morin H, Régnière J, Kneeshaw DD (2015) Climate-induced changes in host tree-insect phenology may drive state-shift in boreal forests. Ecology 96:1480–1491CrossRefGoogle Scholar
  37. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517CrossRefGoogle Scholar
  38. Raske AG (1985) Collapsing budworm populations. In: Sanders CJ, Stark RW, Mullins EJ, Murphy J (eds) Recent advances in spruce budworms research. proceedings CANUSA spruce budworms research symposium, Canadian Forestry Service, Ottawa, ON, pp 141–142Google Scholar
  39. Régnière J, Duval P (1998) Overwintering mortality of spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), populations under field conditions. Can Entomol 130:13–26CrossRefGoogle Scholar
  40. Régnière J, Nealis VG (2008) The fine-scale population dynamics of spruce budworm: survival of early instars related to forest condition. Ecol Entomol 33:362–373CrossRefGoogle Scholar
  41. Régnière J, St-Amant R (2008) BioSIM 9 User’s Manual. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Information Report LAU-X-134Google Scholar
  42. Régnière J, St-Amant R, Duval P (2012) Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biol Invasions 14:1571–1586CrossRefGoogle Scholar
  43. Robertson JL (1985) Handbook of insect rearing, vol II. Elsevier Sciences, New YorkGoogle Scholar
  44. Rossi S (2015) Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances. Int J Biometeorol 59:827–835CrossRefPubMedGoogle Scholar
  45. SAS Institute Inc. (2003) SAS/STAT User’s Guide, release 9.1 edn. SAS Institute Inc, CaryGoogle Scholar
  46. Schwartzberg EG, Jamieson MA, Raffa KF, Reich PB, Montgomergy RA, Lindroth RL (2014) Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia 175:1041–1049CrossRefPubMedGoogle Scholar
  47. Tikkanen O-P, Julkunen-Tiitto R (2003) Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136:244–251CrossRefPubMedGoogle Scholar
  48. Tippey KG, Longnecker MT (2016) An Ad Hoc Method for Computing Pseudo-Effect Size for Mixed Models. Proceedings of south central SAS users group forum 2016. Accessed 7 Apr 2017
  49. Trier TM, Mattson WJ (1997) Needle mining by the spruce budworm provides sustenance in the midst of privation. Oikos 79:241–246CrossRefGoogle Scholar
  50. van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55CrossRefPubMedGoogle Scholar
  51. van Asch M, Salis L, Holleman LJM, van Lith B, Visser ME (2013) Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nat Clim Change 3:244–248CrossRefGoogle Scholar
  52. Volney WJA, Fleming RA (2007) Spruce budworm (Choristoneura spp.) biotype reactions to forest and climate characteristics. Glob Chang Biol 13:1630–1643CrossRefGoogle Scholar
  53. Watt AD, McFarlane AM (1991) Winter moth on sitka spruce: synchrony of egg hatch and budburst, and its effect on larval survival. Ecol Entomol 16L:387–390CrossRefGoogle Scholar
  54. Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval lepidoptera. Ann Rev Entomol 47:361–393CrossRefGoogle Scholar
  55. Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Glob Chan Biol 12:27–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Alvaro Fuentealba
    • 1
    • 2
    Email author
  • Deepa Pureswaran
    • 3
  • Éric Bauce
    • 2
  • Emma Despland
    • 1
  1. 1.Department of BiologyConcordia UniversityMontrealCanada
  2. 2.Centre d’étude de la forêt (CEF) and Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatiqueUniversité LavalQuebec CityCanada
  3. 3.Natural Resources Canada, Canadian Forest ServiceSainte-FoyCanada

Personalised recommendations