Advertisement

Oecologia

, Volume 184, Issue 4, pp 749–761 | Cite as

Which temporal resolution to consider when investigating the impact of climatic data on population dynamics? The case of the lesser horseshoe bat (Rhinolophus hipposideros)

  • Pierre-Loup Jan
  • Olivier Farcy
  • Josselin Boireau
  • Erwan Le Texier
  • Alice Baudoin
  • Pascaline Le Gouar
  • Sébastien J. Puechmaille
  • Eric J. Petit
Highlighted Student Research

Abstract

Climatic variables are often considered when studying environmental impacts on population dynamics of terrestrial species. However, the temporal resolution considered varies depending on studies, even among studies of the same taxa. Most studies interested in climatic impacts on populations tend to average climatic data across timeframes covering life cycle periods of the organism in question or longer, even though most climatic databases provide at least a monthly resolution. We explored the impact of climatic variables on lesser horseshoe bat (Rhinolophus hipposideros) demography based on count data collected at 94 maternity colonies from 2000 to 2014 in Britanny, France. Meteorological data were considered using different time resolutions (month, life cycle period and year) to investigate their adequacy. Model averaging was used to detect significant predictors for each temporal resolution. Our results show that the finest temporal resolution, e.g. month, was more informative than coarser ones. Precipitation predictors were particularly decisive, with a negative impact on colony sizes when rainfall occurred in October, and a positive impact for June precipitations. Fecundity was influenced by April weather. This highlights the strong impact of climatic conditions during crucial but short time periods on the population dynamics of bats. We demonstrate the importance of choosing an appropriate time resolution and suggest that analogous studies should consider fine-scale temporal resolution (e.g. month) to better grasp the relationship between population dynamics and climatic conditions.

Keywords

Rhinolophus hipposideros Temporal resolution Model averaging Climatic variables Population demography 

Notes

Author Contributions

OF and JB provided count data. ELT and AB developed methodology. PLJ, PLG, SJP and EJP analyzed the data. PLJ, PLG, SJP and EJP wrote the manuscript.

Supplementary material

442_2017_3901_MOESM1_ESM.pdf (401 kb)
Supplementary material 1 (PDF 400 kb)

References

  1. Adams RA (2010) Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 91:2437–2445CrossRefPubMedGoogle Scholar
  2. Adams RA, Hayes MA (2008) Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J Anim Ecol 77:1115–1121. doi: 10.1111/j.1365-2656.2008.01447.x CrossRefPubMedGoogle Scholar
  3. Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636CrossRefPubMedGoogle Scholar
  4. Akesson S (2016) Flying with the winds: differential migration strategies in relation to winds in moth and songbirds. J Anim Ecol 85:1–4. doi: 10.1111/1365-2656.12450 CrossRefPubMedGoogle Scholar
  5. Amorim F, Rebelo H, Rodrigues L (2012) Factors influencing bat activity and mortality at a wind farm in the mediterranean Region. Acta Chiropterol 14:439–457. doi: 10.3161/150811012X661756 CrossRefGoogle Scholar
  6. Amorim F, Mata VA, Beja P, Rebelo H (2015) Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis). Mamm Biol 80:228–236. doi: 10.1016/j.mambio.2015.01.005 CrossRefGoogle Scholar
  7. Barbet-Massin M, Jetz W (2014) A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling. Divers Distrib 20:1285–1295. doi: 10.1111/ddi.12229 CrossRefGoogle Scholar
  8. Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411:183–186. doi: 10.1038/35075554 CrossRefPubMedGoogle Scholar
  9. Bateman BL, Abell-Davis SE, Johnson CN (2011) Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica). Aust J Zool 59:177–185. doi: 10.1071/ZO11079 CrossRefGoogle Scholar
  10. Beltramino AA, Vogler RE, Gutiérrez Gregoric DE, Rumi A (2015) Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna. Clim Change 131:621–633. doi: 10.1007/s10584-015-1405-3 CrossRefGoogle Scholar
  11. Bleho BI, Koper N, Borkowsky CL, Hamel CD (2015) Effects of weather and land management on the western prairie fringed-orchid (Platanthera praeclara) at the northern limit of its range in Manitoba, Canada. Am Midl Nat 174:191–203. doi: 10.1674/0003-0031-174.2.191 CrossRefGoogle Scholar
  12. Bontadina F, Arlettaz R, Fankhauser T et al (2000) The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: present status and research recommendations. Le Rhinolophe 14:69–83Google Scholar
  13. Bontadina F, Schofield H, Naef-Daenzer B (2002) Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. J Zool 258:281–290. doi: 10.1017/S0952836902001401 CrossRefGoogle Scholar
  14. Bruggeman JE, Swem T, Andersen DE et al (2015) Dynamics of a recovering arctic bird population: the importance of climate, density dependence, and site quality. Ecol Appl 25:1932–1943CrossRefPubMedGoogle Scholar
  15. Burles DW, Brigham RM, Ring RA, Reimchen TE (2009) Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest. Can J Zool 87:132–138CrossRefGoogle Scholar
  16. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, BerlinGoogle Scholar
  17. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. doi: 10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
  18. Calcagno V, de Mazancourt C et al (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29CrossRefGoogle Scholar
  19. Ceglar A, Toreti A, Lecerf R et al (2016) Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agric For Meteorol 216:58–67. doi: 10.1016/j.agrformet.2015.10.004 CrossRefGoogle Scholar
  20. Ciechanowski M, Zajac T, Bilas A, Dunajski R (2007) Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter. Can J Zool 85:1249–1263CrossRefGoogle Scholar
  21. Ciuti S, Jensen WF, Nielsen SE, Boyce MS (2015) Predicting mule deer recruitment from climate oscillations for harvest management on the northern Great Plains: predicting deer recruitment from climate indices. J Wildl Manag 79:1226–1238. doi: 10.1002/jwmg.956 CrossRefGoogle Scholar
  22. Del Toro I, Silva RR, Ellison AM (2015) Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Divers Distrib 21:781–791. doi: 10.1111/ddi.12331 CrossRefGoogle Scholar
  23. Delignette-Muller ML, Dutang C (2014) fitdistrplus: an R package for fitting distributions. J Stat Softw 64:1–34Google Scholar
  24. Dool SE, Puechmaille SJ, Dietz C et al (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070. doi: 10.1111/mec.12373 CrossRefPubMedGoogle Scholar
  25. Dool SE, Puechmaille SJ, Kelleher C et al (2016) The effects of human-mediated habitat fragmentation on a sedentary woodland-associated species (Rhinolophus hipposideros) at its range margin. Acta Chiropterol 18:377–393CrossRefGoogle Scholar
  26. Dugger KM, Forsman ED, Franklin AB et al (2016) The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls. Condor 118:57–116. doi: 10.1650/CONDOR-15-24.1 CrossRefGoogle Scholar
  27. Forrester TD, Wittmer HU (2013) A review of the population dynamics of mule deer and black-tailed deer Odocoileus hemionus in North America. Mammal Rev 43:292–308. doi: 10.1111/mam.12002 CrossRefGoogle Scholar
  28. Frick WF, Reynolds DS, Kunz TH (2010) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79:128–136. doi: 10.1111/j.1365-2656.2009.01615.x CrossRefPubMedGoogle Scholar
  29. Frick WF, Stepanian PM, Kelly JF et al (2012) Climate and weather impact timing of emergence of bats. PLoS One 7:e42737. doi: 10.1371/journal.pone.0042737 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gaisler J (1966) Reproduction in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros Bechstein, 1800). Bijdr Tot Dierkd 36:45–62Google Scholar
  31. Geber MA (2008) To the edge: studies of species’ range limits. New Phytol 178:228–230CrossRefPubMedGoogle Scholar
  32. Gedir JV, Cain JW, Harris G, Turnbull TT (2015) Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 6:1–20. doi: 10.1890/ES15-00266.1 CrossRefGoogle Scholar
  33. Giam X, Olden JD (2016) Quantifying variable importance in a multimodel inference framework. Methods Ecol Evol 7:388–397. doi: 10.1111/2041-210X.12492 CrossRefGoogle Scholar
  34. Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61CrossRefPubMedGoogle Scholar
  35. Grindal SD, Collard TS, Brigham RM, Barclay RM (1992) The influence of precipitation on reproduction by Myotis bats in British Columbia. Am Midl Nat 128:339–344CrossRefGoogle Scholar
  36. Hasan F, Ansari MS (2016) Temperature-dependent development and demography of Zygogramma bicolorata (Coleoptera: Chrysomelidae) on Parthenium hysterophorus. Ann Appl Biol 168:81–92. doi: 10.1111/aab.12244 CrossRefGoogle Scholar
  37. Haysom K, Dekker J, Russ J et al (2013) European bat population trends—a prototype biodiversity indicator. European Environment Agency, DenmarkGoogle Scholar
  38. Herfindal I, van de Pol M, Nielsen JT et al (2015) Climatic conditions cause complex patterns of covariation between demographic traits in a long-lived raptor. J Anim Ecol 84:702–711. doi: 10.1111/1365-2656.12318 CrossRefPubMedGoogle Scholar
  39. Hoying KM, Kunz TH (1998) Variation in size at birth and post-natal growth in the insectivorous bat Pipistrellus subflavus (Chiroptera: Vespertilionidae). J Zool 245:15–27CrossRefGoogle Scholar
  40. Hoyle SD, Pople AR, Toop GJ (2001) Mark–recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population. Austral Ecol 26:80–92Google Scholar
  41. Jones G, Jacobs DS, Kunz TH et al (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115CrossRefGoogle Scholar
  42. Kanno Y, Pregler KC, Hitt NP et al (2016) Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics. Freshw Biol 61:88–99. doi: 10.1111/fwb.12682 CrossRefGoogle Scholar
  43. Kayikcioglu A, Zahn A (2004) High temperatures and the use of satellite roosts in Rhinolophus hipposideros. Mamm Biol 69:337–341. doi: 10.1078/1616-5047-00152 CrossRefGoogle Scholar
  44. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350CrossRefPubMedGoogle Scholar
  45. Kearney MR, Matzelle A, Helmuth B (2012) Biomechanics meets the ecological niche: the importance of temporal data resolution. J Exp Biol 215:1422–1424. doi: 10.1242/jeb.072249 CrossRefGoogle Scholar
  46. Kerbiriou C, Julien JF, Monsarrat S et al (2015) Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum. Wildl Res 42:35. doi: 10.1071/WR14197 CrossRefGoogle Scholar
  47. Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334CrossRefGoogle Scholar
  48. Lamy C, Dubreuil V (2010) Impact des sécheresses en bretagne sur le bilan hydrique: modélisation à partir du climat d’années passées—23ème Colloque de l’Association Internationale de Climatologie, pp 325–330Google Scholar
  49. Lankinen A, Smith HG, Andersson S, Madjidian JA (2016) Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb. Am J Bot 103(3):541–552CrossRefPubMedGoogle Scholar
  50. Leigh C, Bush A, Harrison ET et al (2015) Ecological effects of extreme climatic events on riverine ecosystems: insights from Australia. Freshw Biol 60:2620–2638. doi: 10.1111/fwb.12515 CrossRefGoogle Scholar
  51. Link WA, Barker RJ (2006) Model weights and the foundations of multimodel inference. Ecology 87:2626–2635CrossRefPubMedGoogle Scholar
  52. López-Roig M, Serra-Cobo J (2014) Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul Ecol 56:471–480. doi: 10.1007/s10144-014-0437-2 CrossRefGoogle Scholar
  53. Lučan RK, Weiser M, Hanák V (2013) Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat: climate change and reproduction of a temperate bat. J Zool 290:151–159. doi: 10.1111/jzo.12021 CrossRefGoogle Scholar
  54. Lukacs PM, Burnham KP, Anderson DR (2010) Model selection bias and Freedman’s paradox. Ann Inst Stat Math 62:117–125. doi: 10.1007/s10463-009-0234-4 CrossRefGoogle Scholar
  55. Masciocchi M, Pereira AJ, Corley JC (2016) Local dynamics of worker activity of the invasive Vespula germanica and V. vulgaris (Hymenoptera: Vespidae) wasps in Argentina: activity fluctuations of Vespula spp. in Argentina. Ecol Entomol 41:105–111. doi: 10.1111/een.12277 CrossRefGoogle Scholar
  56. McLean N, Lawson CR, Leech DI, van de Pol M (2016) Predicting when climate-driven phenotypic change affects population dynamics. Ecol Lett 19:595–608. doi: 10.1111/ele.12599 CrossRefPubMedGoogle Scholar
  57. Metz J, Tielboerger K (2016) Spatial and temporal aridity gradients provide poor proxies for plant-plant interactions under climate change: a large-scale experiment. Funct Ecol 30:20–29. doi: 10.1111/1365-2435.12599 CrossRefGoogle Scholar
  58. Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500CrossRefPubMedGoogle Scholar
  59. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  60. Nouvellet P, Newman C, Buesching CD, Macdonald DW (2013) A multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the european badger (Meles meles). PLoS One 8:e68116. doi: 10.1371/journal.pone.0068116 CrossRefPubMedPubMedCentralGoogle Scholar
  61. O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. doi: 10.1111/j.2041-210X.2010.00021.x CrossRefGoogle Scholar
  62. Parent CJ, Hernández F, Brennan LA et al (2016) Northern bobwhite abundance in relation to precipitation and landscape structure: mapping Northern bobwhite. J Wildl Manag 80:7–18. doi: 10.1002/jwmg.992 CrossRefGoogle Scholar
  63. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691CrossRefGoogle Scholar
  64. Peterman WE, Semlitsch RD (2014) Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia 176:357–369. doi: 10.1007/s00442-014-3041-4 CrossRefPubMedGoogle Scholar
  65. Puechmaille SJ, Petit EJ (2007) Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session: non-invasive capture-mark-recapture. J Appl Ecol 44:843–852. doi: 10.1111/j.1365-2664.2007.01321.x CrossRefGoogle Scholar
  66. Radchuk V, Johst K, Groeneveld J et al (2014) Appropriate resolution in time and model structure for population viability analysis: insights from a butterfly metapopulation. Biol Conserv 169:345–354. doi: 10.1016/j.biocon.2013.12.004 CrossRefGoogle Scholar
  67. Ray D, Behera MD, Jacob J (2016) Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socioeconomic factors. Ecol Res 31:75–91. doi: 10.1007/s11284-015-1318-7 CrossRefGoogle Scholar
  68. Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Change Biol 16:561–576CrossRefGoogle Scholar
  69. Reiter G (2004a) Postnatal growth and reproductive biology of Rhinolophus hipposideros (Chiroptera: Rhinolophidae). J Zool 262:231–241. doi: 10.1017/S0952836903004588 CrossRefGoogle Scholar
  70. Reiter G (2004b) The importance of woodland for Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in Austria. Mamm Mamm 68:403–410Google Scholar
  71. Sæther B-E, Tufto J, Engen S et al (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856. doi: 10.1126/science.287.5454.854 CrossRefPubMedGoogle Scholar
  72. Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. In: Moller AP, Fielder W, Berthold P (eds) Birds and climate change. Elsevier Science Ltd, London, pp 185–209CrossRefGoogle Scholar
  73. Satterthwaite WH, Kitaysky AS, Mangel M (2012) Linking climate variability, productivity and stress to demography in a long-lived seabird. Mar Ecol Prog Ser 454:221–235. doi: 10.3354/meps09539 CrossRefGoogle Scholar
  74. Schorcht W, Bontadina F, Schaub M (2009) Variation of adult survival drives population dynamics in a migrating forest bat. J Anim Ecol 78:1182–1190. doi: 10.1111/j.1365-2656.2009.01577.x CrossRefPubMedGoogle Scholar
  75. Seckerdieck A, Walther B, Halle S (2005) Alternative use of two different roost types by a maternity colony of the lesser horseshoe bat (Rhinolophus hipposideros). Mamm Biol 70:201–209. doi: 10.1016/j.mambio.2004.10.002 CrossRefGoogle Scholar
  76. Şekercioğlu ÇH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18. doi: 10.1016/j.biocon.2011.10.019 CrossRefGoogle Scholar
  77. Spiller DA, Schoener TW (2008) Climatic control of trophic interaction strength: the effect of lizards on spiders. Oecologia 154:763–771. doi: 10.1007/s00442-007-0867-z CrossRefPubMedGoogle Scholar
  78. Taylor LR (1963) Analysis of the effect of temperature on insects in flight. J Anim Ecol 32:99–117. doi: 10.2307/2520 CrossRefGoogle Scholar
  79. Thomas JA, Moss D, Pollard E (1994) Increased fluctuations of butterfly populations towards the northern edges of species’ ranges. Ecography 17:215–220. doi: 10.1111/j.1600-0587.1994.tb00096.x CrossRefGoogle Scholar
  80. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  81. Townsend AK, Cooch EG, Sillett TS et al (2016) The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob Change Biol 22:544–555. doi: 10.1111/gcb.13053 CrossRefGoogle Scholar
  82. Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landsc Ecol 3:245–252CrossRefGoogle Scholar
  83. Uhrin M, Hüttmeir U, Kipson M et al (2016) Status of Savi’s pipistrelle Hypsugo savii (Chiroptera) and range expansion in Central and south-eastern Europe: a review. Mammal Rev 46:1–16. doi: 10.1111/mam.12050 CrossRefGoogle Scholar
  84. Urban MC, Bocedi G, Hendry AP et al (2016) Improving the forecast for biodiversity under climate change. Science 353:1113. doi: 10.1126/science.aad8466 CrossRefGoogle Scholar
  85. Van de Pol M, Vindenes Y, Sæther B-E et al (2010) Effects of climate change and variability on population dynamics in a long-lived shorebird. Ecology 91:1192–1204CrossRefPubMedGoogle Scholar
  86. Van de Pol M, Bailey LD, McLean N et al (2016) Identifying the best climatic predictors in ecology and evolution. Methods Ecol Evol. doi: 10.1111/2041-210X.12590 Google Scholar
  87. Van der Wal J, Beaumont L, Zimmerman N, Lorch P (2014) Climates: methods for working with weather and climate. R package version 0.1–1.6Google Scholar
  88. Voigt CC, Schneeberger K, Voigt-Heucke SL, Lewanzik D (2011) Rain increases the energy cost of bat flight. Biol Lett 7:793–795. doi: 10.1098/rsbl.2011.0313 CrossRefPubMedPubMedCentralGoogle Scholar
  89. White TCR (2008) The role of food, weather and climate in limiting the abundance of animals. Biol Rev 83:227–248. doi: 10.1111/j.1469-185X.2008.00041.x CrossRefPubMedGoogle Scholar
  90. Williams CB (1951) Changes in insect populations in the field in relation to preceding weather conditions. Proc R Soc Lond B Biol Sci 138:130–156. doi: 10.1098/rspb.1951.0011 CrossRefPubMedGoogle Scholar
  91. Wu J (2016) Detection and attribution of the effects of climate change on bat distributions over the last 50 years. Clim Change 134:681–696. doi: 10.1007/s10584-015-1543-7 CrossRefGoogle Scholar
  92. Xu T, Hutchinson MF (2013) New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ Model Softw 40:267–279. doi: 10.1016/j.envsoft.2012.10.003 CrossRefGoogle Scholar
  93. Zahn A (1999) Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis. J Zool 247:275–280CrossRefGoogle Scholar
  94. Zuur AF, Ieno EN, Walker NJ et al (2009) Zero-truncated and zero-inflated models for count data. Mixed effects models and extensions in ecology with R. Springer, New York, pp 261–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.UMR 985ESE, Ecology and Ecosystem Health, INRARennes CedexFrance
  2. 2.Bretagne VivanteBrest Cedex 2France
  3. 3.Groupe Mammologique BretonSizunFrance
  4. 4.UMR 6553 ECOBIOCNRS, Université Rennes 1, Station Biologique de PaimpontPaimpontFrance
  5. 5.Zoological Institute and MuseumGreifswald UniversityGreifswaldGermany

Personalised recommendations