Oecologia

, Volume 184, Issue 4, pp 885–899 | Cite as

What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages

Community ecology – original research

Abstract

Biodiversity is known to increase ecosystem functioning. However, species vary in their contributions to ecosystem processes. Here, we investigated seven ecosystem functions based on the consumption of different resources in tropical ant communities. We analysed how different species influence site-level resource consumption, and determined how each species influenced performance and stability of these functions. Based on simulated extinctions, we identified ‘key species’ with significant functional contributions. We then investigated which traits, such as biomass, abundance, and specialisation, characterized them, and compared trait distributions across four sites to analyse differences in functional redundancy. Only few species significantly influenced ecosystem functions. Common generalist species tended to be the most important drivers of many ecosystem functions, though several specialist species also proved to be important in this study. Moreover, species-specific ecological impacts varied across sites. In addition, we found that functional redundancy varied across sites, and was highest in sites where the most common species did not simultaneously have the greatest functional impacts. Furthermore, redundancy was enhanced in sites where species were less specialised and had more even incidence distributions. Our study demonstrates that the ecological importance of a species depends on its functional traits, but also on the community context. It cannot be assessed without investigating its species-specific performance across multiple functions. Hence, to assess functional redundancy in a habitat and the potential for compensation of species loss, researchers need to study species-specific traits that concern functional performance as well as population dynamics and tolerance to environmental conditions.

Keywords

Ecosystem processes Functional performance Functional redundancy Formicidae Resource consumption 

Supplementary material

442_2017_3900_MOESM1_ESM.ppt (756 kb)
Supplementary material 1 (PPT 755 kb)
442_2017_3900_MOESM2_ESM.xls (96 kb)
Supplementary material 2 (XLS 96 kb)

References

  1. Allen A, Brown J, Gillooly J (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548. doi:10.1126/science.1072380 CrossRefPubMedGoogle Scholar
  2. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x CrossRefPubMedGoogle Scholar
  3. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285. doi:10.1046/j.1461-0248.2003.00432.x CrossRefGoogle Scholar
  4. Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199. doi:10.1016/S0929-1393(98)00120-6 CrossRefGoogle Scholar
  5. Berg MP, Ellers J (2010) Trait plasticity in species interactions: a driving force of community dynamics. Evol Ecol 24:617–629CrossRefGoogle Scholar
  6. Blüthgen N, Feldhaar H (2010) Food and shelter: how resources influence ant ecology. In: Lach L, Parr CL, Abbott KL (eds) ant ecology. Oxford University Press, Oxford, pp 115–136Google Scholar
  7. Blüthgen N, Klein A-M (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12:282–291. doi:10.1016/j.baae.2010.11.001 CrossRefGoogle Scholar
  8. Blüthgen N, Menzel F, Blüthgen N (2006a) Measuring specialization in species interaction networks. BMC Ecol 67:9CrossRefGoogle Scholar
  9. Blüthgen N, Mezger D, Linsenmair KE (2006b) Ant-hemipteran trophobioses in a Bornean rainforest—diversity, specificity and monopolisation. Insectes Soc 53:194–203CrossRefGoogle Scholar
  10. Byrnes JEK, Gamfeldt L, Isbell F et al (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124. doi:10.1111/2041-210X.12143 CrossRefGoogle Scholar
  11. Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. doi:10.1038/nature05202 CrossRefPubMedGoogle Scholar
  12. Chapin FS, Walker BH, Hobbs RJ et al (1997) Biotic control over the functioning of ecosystems. Science 277:500–504CrossRefGoogle Scholar
  13. Collins SL, Glenn SM, Briggs JM (2002) Effect of local and regional processes on plant species richness in tallgrass prairie. Oikos 99:571–579CrossRefGoogle Scholar
  14. Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68:295–323CrossRefGoogle Scholar
  15. Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687. doi:10.1046/j.1461-0248.2003.00494.x CrossRefGoogle Scholar
  16. Elmqvist T, Folke C, Nystrom M et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494CrossRefGoogle Scholar
  17. Fayle TM, Eggleton P, Manica A et al (2015) Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants. Ecol Lett 18:254–262. doi:10.1111/ele.12403 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14. doi:10.1007/s13398-014-0173-7.2 CrossRefGoogle Scholar
  19. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244CrossRefGoogle Scholar
  20. Gaston KJ, Fuller RA (2008) Commonness, population depletion and conservation biology. Trends Ecol Evol 23:14–19. doi:10.1016/j.tree.2007.11.001 CrossRefPubMedGoogle Scholar
  21. Geider RJ, Delucia EH, Falkowski PG et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882. doi:10.1046/j.1365-2486.2001.00448.x CrossRefGoogle Scholar
  22. Gibb H, Hochuli DF (2004) Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85:648–657CrossRefGoogle Scholar
  23. Gibb H, Johansson T (2011) Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. J Anim Ecol 80:548–557. doi:10.1111/j.1365-2656.2010.01794.x CrossRefPubMedGoogle Scholar
  24. Gibb H, Parr CL (2010) How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164:1061–1073. doi:10.1007/s00442-010-1703-4 CrossRefPubMedGoogle Scholar
  25. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x CrossRefGoogle Scholar
  26. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190. doi:10.1038/nature05947 CrossRefPubMedGoogle Scholar
  27. Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328. doi:10.1007/s10021-009-9291-z CrossRefGoogle Scholar
  28. Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  29. Houadria MYI, Salaz-Lopez A, Orivel J et al (2015) Dietary and temporal niche differentiation in tropical ants—can they explain local ant coexistence? Biotropica 47:208–217CrossRefGoogle Scholar
  30. Houadria M, Blüthgen N, Salas-Lopez A et al (2016) The relation between circadian asynchrony, functional redundancy and trophic performance in tropical ant communities. Ecology 97:225–235. doi:10.1890/14-2466.1 PubMedGoogle Scholar
  31. Isbell F, Calcagno V, Hector A et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. doi:10.1038/nature10282 CrossRefPubMedGoogle Scholar
  32. Jenkins SR, Coleman RA, Della Santina P et al (2005) Regional scale differences in the determinism of grazing effects in the rocky intertidal. Mar Ecol Prog Ser 287:77–86. doi:10.3354/meps287077 CrossRefGoogle Scholar
  33. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  34. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439CrossRefPubMedGoogle Scholar
  35. King JR, Tschinkel WR (2006) Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J Anim Ecol 75:1370–1378. doi:10.1111/j.1365-2656.2006.01161.x CrossRefPubMedGoogle Scholar
  36. Laliberte E, Wells JA, DeClerck F et al (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86. doi:10.1111/j.1461-0248.2009.01403.x CrossRefPubMedGoogle Scholar
  37. Lehman CL, Tilman D (2000) Biodiversity, stability, and productivity in competitive communities. Am Nat 156:534–552. doi:10.1086/303402 CrossRefGoogle Scholar
  38. Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, PrincetonGoogle Scholar
  39. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi:10.1038/35083573 CrossRefPubMedGoogle Scholar
  40. Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088 CrossRefPubMedGoogle Scholar
  41. Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem function—invasion resistance. Ecol Lett 4:358–365. doi:10.1046/j.1461-0248.2001.00235.x CrossRefGoogle Scholar
  42. Mason N, Mouillot D, Lee W, Wilson J (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118CrossRefGoogle Scholar
  43. Menzel F, Blüthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79:71–81. doi:10.1111/j.1365-2656.2009.01628.x CrossRefPubMedGoogle Scholar
  44. Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514. doi:10.1111/j.2006.0030-1299.14143.x CrossRefGoogle Scholar
  45. Ness J, Mooney K, Lach L (2010) Ants as mutualists. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 97–114Google Scholar
  46. Ohkawara K, Nakamura K, Kadokura N, Terashita T (2016) Geographical variation in mandible morphologies specialised for collembolan predation depend on prey size in the ant Strumigenys lewisi. Ecol Entomol. doi:10.1111/een.12374.10.1111/een.12374 Google Scholar
  47. Orivel J, Leroy C (2010) The diversity and ecology of ant gardens (Hymenoptera: formicidae; Spermatophyta: Angiospermae). Myrmecological News 14:73–85Google Scholar
  48. Philpott SM, Soong O, Lowenstein JH et al (2009) Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol Appl 19:1858–1867CrossRefPubMedGoogle Scholar
  49. Power ME, Tilman D, Estes JA et al (1996) Challenges in the quest for keystones. Bioscience 46:609–620CrossRefGoogle Scholar
  50. Rosenfeld J (2002a) Logical fallacies in the assessment of functional redundancy. Conserv Biol 16:837–839CrossRefGoogle Scholar
  51. Rosenfeld J (2002b) Functional redundancy in ecology and conservation. Oikos 98:156–162CrossRefGoogle Scholar
  52. Sanders NJ, Gordon DM (2003) Resource-dependent interactions and the organization of desert ant communities. Ecology 84:1024–1031CrossRefGoogle Scholar
  53. Sasaki T, Lauenroth WK (2011) Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166:761–768CrossRefPubMedGoogle Scholar
  54. Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol Conserv 83:247–257CrossRefGoogle Scholar
  55. Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517CrossRefGoogle Scholar
  56. Smith MD, Wilcox JC, Kelly T, Knapp AK (2004) Dominance not richness determines invasibility of tallgrass prairie. Oikos 106:253–262. doi:10.1111/j.0030-1299.2004.13057.x CrossRefGoogle Scholar
  57. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474Google Scholar
  58. Tobin JE (1995) Ecology and diversity of tropical forest canopy ants. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, London, pp 129–147Google Scholar
  59. Traniello JFA (1989) Foraging strategies of ants. Annu Rev Entomol 34:191–210. doi:10.1146/annurev.ento.34.1.191 CrossRefGoogle Scholar
  60. Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113CrossRefGoogle Scholar
  61. Wang Y, Wu H (2015) Stability of plant-pollinator-ant co-mutualism. Appl Math Comput 261:231–241. doi:10.1016/j.amc.2015.03.061 Google Scholar
  62. Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258CrossRefGoogle Scholar
  63. Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Organismic and Molecular Evolutionary BiologyUniversity of MainzMainzGermany
  2. 2.Institute of Entomology, Biology Centre of Academy of Sciences and Faculty of ScienceUniversity of South BohemiaCeske BudjoviceCzech Republic

Personalised recommendations