, Volume 184, Issue 2, pp 555–568 | Cite as

Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing

  • Cristiane Biasi
  • Manuel A. S. Graça
  • Sandro Santos
  • Verónica Ferreira
Global change ecology – original research


Nutrient enrichment of soils and water will intensify in the future and has the potential to alter fundamental ecosystem processes, such as litter decomposition. We tested the direct (via water nutrient enrichment) and indirect (via changes in leaf chemistry) effects of nutrient enrichment on microbial activity and decomposability of Quercus robur L. (oak) leaves in laboratory microcosms simulating streams. Senescent leaves of oak trees grown without and with fertilization were incubated under ambient and elevated water nutrient [nitrogen (N) and phosphorus (P)] concentrations for 60 days. Soil fertilization led to an increase in leaf (3.4×) and leaf litter (2.3×) N concentration. Increased water-dissolved nutrients concentrations stimulated microbial activity (N uptake, microbial respiration, fungal biomass buildup and conidia production by aquatic hyphomycetes) that translated into accelerated litter decomposition (2.1× for unfertilized and 1.6× for fertilized trees). Leaves from fertilized trees had higher microbial activity and decomposition rates than leaves from unfertilized trees only at low dissolved nutrient availability. When both litter and water nutrients concentration increased, microbial activity and leaf decomposition were stimulated, but the effects were additive and direct effects from increased dissolved nutrient availability were stronger than those mediated by increases in litter N concentration (indirect effects). Our results suggest that increases in water nutrient availability (within the range used in this study) may exert a stronger control on microbial activity and litter decomposition than litter nutrient enrichment.


Eutrophication Fertilization Litter Aquatic hyphomycetes Decomposition Streams 



This study was supported by the Portuguese Foundation for Science and Technology (FCT) through the strategic project UID/MAR/04292/2013 granted to MARE. We thank the FCT for the financial support granted to Verónica Ferreira (IF/00129/2014), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship granted to Cristiane Biasi (Process No.: 99999.006609/2015-05) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the productivity grant granted to Sandro Santos (Process No.: 311142/2014-I).

Author contribution statement

MG and VF conceived and designed the experiment. CB and VF performed the experiment and analysed the data. CB, VF, MG and SS drafted the original manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2017_3869_MOESM1_ESM.docx (138 kb)
Supplementary material 1 (DOCX 137 kb)


  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. doi: 10.2307/2261481 CrossRefGoogle Scholar
  2. APHA (American Public Health Association) (1995) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington, DCGoogle Scholar
  3. Ardón M, Pringle CM, Eggert SL (2009) Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry. J N Am Benthol Soc 28:440–453. doi: 10.1899/07-083.1 CrossRefGoogle Scholar
  4. Arsuffi TL, Suberkropp K (1985) Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches. Oikos 45:50–58. doi: 10.2307/3565221 CrossRefGoogle Scholar
  5. Artigas J, Romaní AM, Sabater S (2008) Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquat Bot 88:32–38. doi: 10.1016/j.aquabot.2007.08.005 CrossRefGoogle Scholar
  6. Bärlocher F, Sridhar KR (2014) Association of animals and fungi in leaf decomposition. In: Jones EBG, Hyde KD, Pang KL (eds) Freshwater fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 412–441Google Scholar
  7. Bisht S (2013) Growth responses of aquatic hyphomycetes to different sources of carbon and nitrogen. J Appl Natl Sci 5:313–317Google Scholar
  8. Bowman WD, Gleveland CO, Halada L, Hresko J, Baron JL (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770. doi: 10.1038/ngeo339 CrossRefGoogle Scholar
  9. Bryant JP, Clausen TP, Reichardt PB, McCarthy MC, Werner RA (1987) Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix ((Choristoneura conflictana (Walker)). Oecologia 73(513):517. doi: 10.1007/BF00379408 Google Scholar
  10. Chandrashekar KR, Kaveriappa KM (1988) Production of extracellular enzymes by aquatic hyphomycetes. Folia Microbiol 33:55–58. doi: 10.1007/BF02928015 CrossRefGoogle Scholar
  11. Chapin FS, Moilanen L (1991) Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715. doi: 10.2307/2937210 CrossRefGoogle Scholar
  12. Chung N, Suberkropp K (2009) Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera: Limnephilidae). Hydrobiologia 630:257–269. doi: 10.1007/s10750-009-9820-y CrossRefGoogle Scholar
  13. Clarke KR, Gorley RN (2001) Primer v5: user manual/tutorial. Primer-E, PlymouthGoogle Scholar
  14. Cornut J, Elger A, Lambrigot D, Marmonier P, Chauvet E (2010) Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshw Biol 55:2541–2556. doi: 10.1111/j.1365-2427.2010.02483.x CrossRefGoogle Scholar
  15. Cornut J, Ferreira V, Gonçalves AL, Chauvet E, Canhoto C (2015) Fungal alteration of the elemental composition of leaf litter affects shredder feeding activity. Freshw Biol 60:1755–1771. doi: 10.1111/fwb.12606 CrossRefGoogle Scholar
  16. Cross WF, Wallace JB, Rosemond AD, Eggert SL (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565. doi:10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2CrossRefPubMedGoogle Scholar
  17. Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8:1129–1137. doi: 10.1111/j.1461-0248.2005.00815.x CrossRefPubMedGoogle Scholar
  18. Danger M, Gessner MO, Bärlocher F (2016) Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fungal Ecol 19:100–111. doi: 10.1016/j.funeco.2015.09.004 CrossRefGoogle Scholar
  19. Fernandes I, Seena S, Pascoal C, Cássio F (2014) Elevated temperature may intensify the positive effects of nutrients on microbial decomposition instreams. Freshw Biol 59:2390–2399. doi: 10.1111/fwb.12445 CrossRefGoogle Scholar
  20. Ferreira V, Chauvet E (2011a) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Change Biol 17:551–564. doi: 10.1111/j.1365-2486.2010.02185.x CrossRefGoogle Scholar
  21. Ferreira V, Chauvet E (2011b) Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167:279–291. doi: 10.1007/s00442-011-1976-2 CrossRefPubMedGoogle Scholar
  22. Ferreira V, Graça MA (2016) Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi. Limnologica 58:69–77. doi: 10.1016/j.limno.2016.03.002 CrossRefGoogle Scholar
  23. Ferreira V, Gulis V, Graça MAS (2006) Whole stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729. doi: 10.1007/s00442-006-0478-0 CrossRefPubMedGoogle Scholar
  24. Ferreira V, Encalada AC, Graça MA (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–962. doi: 10.1899/11-062.1 CrossRefGoogle Scholar
  25. Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, Graça MAS (2015) A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biol Rev 90:669–688. doi: 10.1111/brv.12125 CrossRefPubMedGoogle Scholar
  26. Frainer A, Jabiol J, Gessner MO, Bruder A, Chauvet E, McKie BG (2015) Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos 125:861–871. doi: 10.1111/oik.02687 CrossRefGoogle Scholar
  27. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71. doi: 10.1579/0044-7447-31.2.64 CrossRefPubMedGoogle Scholar
  28. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi: 10.1126/science.1136674 CrossRefPubMedGoogle Scholar
  29. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507PubMedPubMedCentralGoogle Scholar
  30. Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817. doi: 10.2307/1939639 CrossRefGoogle Scholar
  31. Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural handbook. US Department of Agriculture, Washington, DC, pp 1–2Google Scholar
  32. Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Internat Rev Hydrobiol 95:27–41. doi: 10.1002/iroh.200911173 CrossRefGoogle Scholar
  33. Graça MA, Poquet JM (2014) Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–1032. doi: 10.1007/s00442-013-2825-2 CrossRefPubMedGoogle Scholar
  34. Graça MAS, Bärlocher F, Gessner MO (2005) Methods to study litter decomposition. A practical guide. Springer, The NetherlandsCrossRefGoogle Scholar
  35. Griffiths BS, Spilles A, Bonkowski M (2012) C:N: P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecol Proc 1:6. doi: 10.1186/2192-1709-1-6 CrossRefGoogle Scholar
  36. Grimmett IJ, Shipp KN, Macneil A, Bärlocher F (2013) Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol 6:493–500. doi: 10.1016/j.funeco.2013.08.002 CrossRefGoogle Scholar
  37. Gulis V, Suberkropp K (2003a) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134. doi: 10.1046/j.1365-2427.2003.00985.x CrossRefGoogle Scholar
  38. Gulis V, Suberkropp K (2003b) Effects of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19. doi: 10.1007/s00248-002-1032-1 CrossRefPubMedGoogle Scholar
  39. Gulis V, Suberkropp K (2004) Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport. Mycologia 96:57–65. doi: 10.1080/15572536.2005.11832997 CrossRefPubMedGoogle Scholar
  40. Gulis V, Rosemond AD, Suberkropp K, Weyers HS, Benstead JP (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447. doi: 10.1111/j.1365-2427.2004.01281.x CrossRefGoogle Scholar
  41. Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669. doi: 10.1111/j.1365-2427.2006.01615.x CrossRefGoogle Scholar
  42. Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038. doi: 10.2307/3071911 CrossRefGoogle Scholar
  43. Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15:38–57. doi: 10.1890/03-5162 CrossRefGoogle Scholar
  44. Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008) Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant Soil 306:149–158. doi: 10.1007/s11104-008-9565-9 CrossRefGoogle Scholar
  45. Lawler IR, Foley WJ, Woodrow IE, Cork SJ (1997) The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68. doi: 10.1007/s004420050058 CrossRefGoogle Scholar
  46. Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605. doi: 10.1016/j.baae.2007.11.003 CrossRefGoogle Scholar
  47. LeRoy CJ, Whitham TG, Wooley SC, Marks JC (2007) Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. J N Am Benthol Soc 26:426–438. doi: 10.1899/06-113.1 CrossRefGoogle Scholar
  48. Liu P, Huang J, Sun JO, Han X (2010) Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162:771–780. doi: 10.1007/s00442-009-1506-7 CrossRefPubMedGoogle Scholar
  49. Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 7438:459–462. doi: 10.1038/nature11917 CrossRefGoogle Scholar
  50. MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island, Washington, DCGoogle Scholar
  51. Meunier CL, Gundale MJ, Sanchez IS, Liess A (2016) Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob Chang Biol 22:164–179. doi: 10.1111/gcb.12967 CrossRefPubMedGoogle Scholar
  52. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165. doi: 10.1007/s004420000615 CrossRefPubMedGoogle Scholar
  53. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. doi: 10.1128/AEM.70.9.5266-5273.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pascoal C, Cássio F, Marvanová L (2005) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Arch Hydrobiol 162:481–496. doi: 10.1127/0003-9136/2005/0162-0481 CrossRefGoogle Scholar
  55. Pereira A, Geraldes P, Lima-Fernandes E, Fernandes I, Cássio F, Pascoal C (2016) Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecol Ind 69:648–656. doi: 10.1016/j.ecolind.2016.05.017 CrossRefGoogle Scholar
  56. Poff NL, Brinson MM, Day JW Jr (2002) Aquatic ecosystems and global climate change. Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Center on Global Climate Change, ArlingtonGoogle Scholar
  57. Pozo J, Basaguren A, Elosegui A, Molinero J, Fabre E, Chauvet E (1998) Aflorestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia 373(374):101–109. doi: 10.1023/A:1017038701380 CrossRefGoogle Scholar
  58. R Core Team (2014) R: a language and environment for statistical computing. Accessed on May 2016
  59. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006. doi: 10.1073/pnas.0403588101 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rockström J, Steffen W, Noone K, Persson A, Chapin F, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. doi: 10.1038/461472a CrossRefPubMedGoogle Scholar
  61. Rosemond AD, Pringle CM, Ramírez A, Paul MJ, Meyer JL (2002) Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnol Oceanogr 47:278–289. doi: 10.4319/lo.2002.47.1.0278 CrossRefGoogle Scholar
  62. Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DWP, Suberkropp K, Wallace B (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145. doi: 10.1126/science.aaa1958 CrossRefPubMedGoogle Scholar
  63. Schindler MH, Gessner MO (2009) Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649. doi: 10.1890/08-1597.1 CrossRefPubMedGoogle Scholar
  64. Suberkropp K (1998) Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycol Res 102:998–1002. doi: 10.1017/S0953756297005807 CrossRefGoogle Scholar
  65. Suberkropp K, Chauvet E (1995) Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76:1433–1445. doi: 10.2307/1938146 CrossRefGoogle Scholar
  66. Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci 94:1857–1861. doi: 10.1073/pnas.94.5.1857 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tonello G, Naziloski LA, Tonin A, Restello RM, Hepp LU (2016) Effect of Phylloicus on leaf breakdown in a subtropical stream. Limnetica 35:243–252Google Scholar
  68. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137. doi: 10.1139/f80-017 CrossRefGoogle Scholar
  69. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. doi: 10.1890/11-0416.1 CrossRefGoogle Scholar
  70. Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi: 10.1126/science.277.5322.102 CrossRefGoogle Scholar
  71. Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursière J, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB-M, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. doi: 10.1126/science.1219534 CrossRefPubMedGoogle Scholar
  72. Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. doi: 10.1046/j.1365-2435.2003.00694.x CrossRefGoogle Scholar
  73. Yuan Z, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Global Ecol Biogeogr 18:532–542. doi: 10.1111/j.1466-8238.2009.00474.x CrossRefGoogle Scholar
  74. Yuan Z, Chen HYH (2015) Negative effects of fertilization on plant nutrient resorption. Ecology 96:373–380. doi: 10.1890/14-0140.1 CrossRefPubMedGoogle Scholar
  75. Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Penuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–155. doi: 10.1890/14-0777.1 CrossRefGoogle Scholar
  76. Zhang L, Jacob DJ, Knipping EM, Kumar N, Munger JW, Carouge CC, Donkelaar AV, Wang YX, Chen D (2012) Nitrogen deposition to the United States: distribution, sources, and processes. Atmos Chem Phys 12:4539–4554. doi: 10.5194/acp-12-4539-2012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Post-Graduate Program in Animal Biodiversity, Ecology and Evolution Department, Center of Natural and Exact SciencesUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.MARE-Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations