, Volume 183, Issue 4, pp 1087–1099 | Cite as

Growth dynamics of juvenile loggerhead sea turtles undergoing an ontogenetic habitat shift

  • Matthew D. RamirezEmail author
  • Larisa Avens
  • Jeffrey A. Seminoff
  • Lisa R. Goshe
  • Selina S. Heppell
Population ecology – original research


Ontogenetic niche theory predicts that individuals may undergo one or more changes in habitat or diet throughout their lifetime to maintain optimal growth rates, or to optimize trade-offs between mortality risk and growth. We combine skeletochronological and stable nitrogen isotope (δ15N) analyses of sea turtle humeri (n = 61) to characterize the growth dynamics of juvenile loggerhead sea turtles (Caretta caretta) during an oceanic-to-neritic ontogenetic shift. The primary objective of this study was to determine how ontogenetic niche theory extends to sea turtles, and to individuals with different patterns of resource use (discrete shifters, n = 23; facultative shifters n = 14; non-shifters, n = 24). Mean growth rates peaked at the start of the ontogenetic shift (based on change in δ15N values), but returned to pre-shift levels within 2 years. Turtles generally only experienced 1 year of relatively high growth, but the timing of peak growth relative to the start of an ontogenetic shift varied among individuals (before, n = 14; during, n = 12; after, n = 8). Furthermore, no reduction in growth preceded the transition, as is predicted by ontogenetic niche theory. Annual growth rates were similar between non-transitioning turtles resident in oceanic and neritic habitats and turtles displaying alternative patterns of resource use. These results suggest that factors other than maximization of size-specific growth may more strongly influence the timing of ontogenetic shifts in loggerhead sea turtles, and that alternative patterns of resource use may have limited influence on somatic growth and age at maturation in this species.


Growth rates Life history variation Ontogenetic niche theory Skeletochronology Stable nitrogen isotopes 



We thank J. McKay, College of Earth, Ocean, and Atmospheric Sciences Stable Isotope Laboratory (Oregon State University, Corvallis, OR), for assistance with stable isotope analyses; J. Miller for micromill training; E. Parks for assistance with sample processing and collection; and, A. Yarbrough for assistance with collecting areal growth measurements. Special thanks to participants of the National Sea Turtle Stranding and Salvage Network for their dedicated work and sample collection. This study was funded through the Living Marine Resources Cooperative Science Center (LMRCSC) as part of the NOAA Educational Partnership Program, and the NSF Graduate Research Fellowship Program. Research was conducted under USFWS permit number TE-676379-5 issued to the NMFS Southeast Fisheries Science Center. Thank you to M. Snover, J. Miller, B. Crump, C. Layman, and two anonymous reviewers for their help in improving this manuscript.

Author contribution statement

MDR, LA, SSH conceived and designed the study. LA, JAS provided bone samples. LA, LRG performed skeletochronological analyses. MDR, JAS performed stable isotope analyses. MDR analyzed the data and wrote the manuscript; other authors provided editorial advice.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2017_3832_MOESM1_ESM.pdf (500 kb)
Supplementary material 1 (PDF 500 kb)


  1. Avens L, Snover ML (2013) Age and age estimation in sea turtles. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 97–134CrossRefGoogle Scholar
  2. Avens L, Goshe LR, Harms CA, Anderson ET, Goodman Hall AG, Cluse WM, Godfrey MH, Braun-McNeill J, Stacy B, Bailey R, Lamont MM (2012) Population characteristics, age structure, and growth dynamics of neritic juvenile green turtles in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 458:213–229. doi: 10.3354/meps09720 CrossRefGoogle Scholar
  3. Avens L, Goshe LR, Pajuelo M, Bjorndal KA, MacDonald BD, Lemons GE, Bolten AB, Seminoff JA (2013) Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead sea turtle oceanic stage duration and growth dynamics. Mar Ecol Prog Ser 491:235–251. doi: 10.3354/meps10454 CrossRefGoogle Scholar
  4. Avens L, Goshe LR, Coggins L, Snover ML, Pajuelo M, Bjorndal KA, Bolten AB (2015) Age and size at maturation- and adult-stage duration for loggerhead sea turtles in the western North Atlantic. Mar Biol. doi: 10.1007/s00227-015-2705-x Google Scholar
  5. Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 199–231Google Scholar
  6. Bjorndal KA, Bolten AB, Martins HR (2000) Somatic growth model of juvenile loggerhead sea turtles Caretta caretta: duration of pelagic stage. Mar Ecol Prog Ser 202:265–272. doi: 10.3354/meps202265 CrossRefGoogle Scholar
  7. Bjorndal KA, Bolten AB, Dellinger T, Delgado C, Martins HR (2003) Compensatory growth in oceanic loggerhead sea turtles: response to a stochastic environment. Ecology 84:1237–1249. doi:10.1890/0012-9658(2003)084[1237:CGIOLS]2.0.CO;2Google Scholar
  8. Bjorndal KA, Schroeder BA, Foley AM, Witherington BE, Bresette M, Clark D, Herren RM, Arendt MD, Schmid JR, Meylan AB, Meylan PA, Provancha JA, Hart KM, Lamont MM, Carthy RR, Bolten AB (2013) Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic. Mar Biol 160:2711–2721. doi: 10.1007/s00227-013-2264-y CrossRefGoogle Scholar
  9. Bolten AB (2003) Active swimmers–passive drifters: the oceanic juvenile stage of loggerheads in the Atlantic system. In: Bolten AB, Witherington BE (eds) Loggerhead sea turtles. Smithsonian Books, Washington, DC, pp 63–78Google Scholar
  10. Braun-McNeill J, Epperly SP, Avens L, Snover ML, Taylor JC (2008) Growth rates of loggerhead sea turtles (Caretta caretta) from the western North Atlantic. Herpetol Conserv Biol 3:273–281Google Scholar
  11. Chaloupka M, Musick JA (1997) Age, growth, and population dynamics. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 233–376Google Scholar
  12. Coles WC, Musick JA, Williamson LA (2001) Skeletochronology validation from an adult loggerhead (Caretta caretta). Copeia 2001:240–242. doi: 10.2307/1448117 CrossRefGoogle Scholar
  13. Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240. doi: 10.2307/177110 CrossRefGoogle Scholar
  14. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim et Cosmochim Acta 45:341–351. doi: 10.1016/0016-7037(81)90244-1 CrossRefGoogle Scholar
  15. Dmitriew CM (2011) The evolution of growth trajectories: what limits growth rate? Biol Rev 86:97–116. doi: 10.1111/j.1469-185X.2010.00136.x CrossRefPubMedGoogle Scholar
  16. Epperly SP, Braun-McNeill J, Richards PM (2007) Trends in catch rates of sea turtles in North Carolina, USA. Endanger Species Res 3:283–293. doi: 10.3354/esr00054 CrossRefGoogle Scholar
  17. Estrada JA, Rice AN, Natanson LJ, Skomal GB (2006) Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87:829–834. doi:10.1890/0012-9658(2006)87[829:UOIAOV]2.0.CO;2Google Scholar
  18. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean: ecosystem consequences of shark declines. Ecol Lett 13:1055–1071. doi: 10.1111/j.1461-0248.2010.01489.x PubMedGoogle Scholar
  19. Francillon-Vieillot H, Arntzen JW, Géraudie J (1990) Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. J Herp 24:13–22. doi: 10.2307/1564284 CrossRefGoogle Scholar
  20. Goodman Hall AG, Avens L, Braun-McNeill J, Wallace B, Goshe LR (2015) Inferring long-term foraging trends of individual juvenile loggerhead sea turtles using stable isotopes. Mar Ecol Prog Ser 537:265–276. doi: 10.3354/meps11452 CrossRefGoogle Scholar
  21. Grol MGG, Nagelkerken I, Rypel AL, Layman CA (2011) Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia 165:79–88. doi: 10.1007/s00442-010-1833-8 CrossRefPubMedGoogle Scholar
  22. Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229–244. doi: 10.3354/meps10682 CrossRefGoogle Scholar
  23. Halliday TR, Verrell PA (1988) Body size and age in amphibians and reptiles. J Herp 22:253–265. doi: 10.2307/1564148 CrossRefGoogle Scholar
  24. Hamann M, Jessop TS, Schäuble CS (2007) Fuel use and corticosterone dynamics in hatchling green sea turtles (Chelonia mydas) during natal dispersal. J Exp Mar Biol Ecol 353:13–21. doi: 10.1016/j.jembe.2007.08.017 CrossRefGoogle Scholar
  25. Hammerschlag N, Broderick AC, Coker JW, Coyne MS, Dodd M, Frick MG, Godfrey MH, Godley BJ, Griffin DB, Hartog K, Murphy SR, Murphy TM, Nelson ER, Williams KL, Witt MJ, Hawkes LA (2015) Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamics seascape. Ecology 96:2117–2126. doi: 10.1890/14-2113.1 CrossRefPubMedGoogle Scholar
  26. Hatase H, Tsukamoto K (2008) Smaller longer, larger shorter: energy budget calculations explain intrapopulation variation in remigration intervals for loggerhead sea turtles (Caretta caretta). Can J Zool 86:595–600. doi: 10.1139/Z08-035 CrossRefGoogle Scholar
  27. Hatase H, Matsuzawa Y, Sato K, Bando T, Goto K (2004) Remigration and growth of loggerhead turtles (Caretta caretta) nesting on Senri Beach in Minabe, Japan: life-history polymorphism in a sea turtle population. Mar Biol 144:807–811. doi: 10.1007/s00227-003-1232-3 CrossRefGoogle Scholar
  28. Hatase H, Omuta K, Tsukamoto K (2010) Oceanic residents, neritic migrants: a possible mechanism underlying foraging dichotomy in adult female loggerhead turtles (Caretta caretta). Mar Biol 157:1337–1342. doi: 10.1007/s00227-010-1413-9 CrossRefGoogle Scholar
  29. Hatase H, Omuta K, Tsukamoto K (2013) A mechanism that maintains alternative life histories in a loggerhead sea turtle population. Ecology 94:2583–2594. doi: 10.1890/12-1588.1 CrossRefPubMedGoogle Scholar
  30. Heithaus MR (2013) Predators, prey, and the ecological roles of sea turtles. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 249–284CrossRefGoogle Scholar
  31. Heithaus MR, Wirsing AJ, Thomson JA, Burkholder DA (2008) A review of lethal and non-lethal effects of predators on adult marine turtles. J Exp Mar Biol Ecol 356:43–51. doi: 10.1016/j.jembe.2007.12.013 CrossRefGoogle Scholar
  32. Kamezaki N, Matsui M (1997) Allometry of the loggerhead turtle, Caretta caretta. Chelonian Conserv Biol 2:421–425Google Scholar
  33. Kimirei IA, Nagelkerken I, Trommelen M, Blankers P, van Hoytema N, Hoeijmakers D, Huijbers CM, Mgaya YD, Rypel AL (2013) What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems 16:783–796. doi: 10.1007/s10021-013-9645-4 CrossRefGoogle Scholar
  34. Klinger RC, Musick JA (1992) Annular growth layers in juvenile loggerhead turtles (Caretta caretta). Bull Mar Sci 51:224–230Google Scholar
  35. Koch PL, Fogel ML, Tuross N (1994) Tracing the diets of fossil animals using stable isotopes. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Boston, pp 63–92Google Scholar
  36. Mansfield KL, Saba VS, Keinath JA, Musick JA (2009) Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic. Mar Biol 156:2555–2570. doi: 10.1007/s00227-009-1279-x CrossRefGoogle Scholar
  37. McClellan CM, Read AJ (2007) Complexity and variation in loggerhead sea turtle life history. Biol Lett 3:592–594. doi: 10.1098/rsbl.2007.0355 CrossRefPubMedPubMedCentralGoogle Scholar
  38. McClellan CM, Braun-McNeill J, Avens L, Wallace BP, Read AJ (2010) Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J Exp Mar Bio 387:44–51. doi: 10.1016/j.jembe.2010.02.020 CrossRefGoogle Scholar
  39. McKinney RA, Oczkowski AJ, Prezioso J, Hyde KJW (2010) Spatial variability of nitrogen isotope ratios of particulate material from Northwest Atlantic continental shelf waters. Estuar Coast Shelf Sci 89:287–293. doi: 10.1016/j.ecss.2010.08.004 CrossRefGoogle Scholar
  40. McMahon KW, Ling Hamady L, Thorrold SR (2013) A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr 58:697–714. doi: 10.4319/lo.2013.58.2.0697 CrossRefGoogle Scholar
  41. Medeiros L, da Silveira Monteiro D, Petitet R, Bugoni L (2015) Effects of lipid extraction on the isotopic values of sea turtle bone collagen. Aquat Biol 23:191–199. doi: 10.3354/ab00628 CrossRefGoogle Scholar
  42. Montoya JP, Carpenter EJ, Capone DG (2002) Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol Oceanogr 47:1617–1628. doi: 10.4319/lo.2002.47.6.1617 CrossRefGoogle Scholar
  43. Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 137–164Google Scholar
  44. Newsome S, Etnier M, Monson D, Fogel M (2009) Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth. Mar Ecol Prog Ser 374:229–242. doi: 10.3354/meps07747 CrossRefGoogle Scholar
  45. Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Ballance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog Oceanogr 86:124–138. doi: 10.1016/j.pocean.2010.04.026 CrossRefGoogle Scholar
  46. Owens DW (1997) Hormones in the life history of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 315–341Google Scholar
  47. Parham JF, Zug GR (1997) Age and growth of loggerhead sea turtles (Caretta caretta) of coastal Georgia: an assessment of skeletochronological age-estimates. Bull Mar Sci 61:287–304Google Scholar
  48. Peckham SH, Maldonado-Diaz D, Tremblay Y, Ochoa R, Polovina J, Balazs G, Dutton PH, Nichols WJ (2011) Demographic implications of alternative foraging strategies in juvenile loggerhead turtles Caretta caretta of the North Pacific Ocean. Mar Ecol Prog Ser 425:269–280. doi: 10.3354/meps08995 CrossRefGoogle Scholar
  49. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi: 10.1007/s00442-006-0630-x CrossRefPubMedGoogle Scholar
  50. Ramirez MD (2015) Sequential isotopic analysis to characterize ontogenetic shifts and growth dynamics of loggerhead sea turtles (Caretta caretta). Master thesis, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USAGoogle Scholar
  51. Ramirez MD, Avens L, Seminoff JA, Goshe LR, Heppell SS (2015) Patterns of loggerhead turtle ontogenetic shifts revealed through isotopic analysis of annual skeletal growth increments. Ecosphere 6:1–17. doi: 10.1890/ES15-00255.1 CrossRefGoogle Scholar
  52. Ramsay TO, Burnett RT, Krewski D (2003) The effect of concurvity in generalized additive models linking mortality to ambient particulate matter. Epidemiology 14:18–23. doi: 10.1097/01.EDE.0000042182.24340.3F CrossRefPubMedGoogle Scholar
  53. Rasband WS (2015) ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USAGoogle Scholar
  54. Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep-Sea Res 29(8A):1035–1039. doi: 10.1016/0198-0149(82)90026-7 CrossRefGoogle Scholar
  55. Salmon M, Scholl J (2014) Allometric growth in juvenile marine turtles: possible role as an antipredator adaptation. Zoology 117:131–138. doi: 10.1016/j.zool.2013.11.004 CrossRefPubMedGoogle Scholar
  56. Salvanes AGV, Giske J, Nordeide JT (1994) Life history approach to habitat shifts for coastal cod. Aquac Fish Manag 25:215–228Google Scholar
  57. Seney EE, Musick JA (2007) Historical diet analysis of loggerhead sea turtles (Caretta Caretta) in Virginia. Copeia 2007:478–489. doi:10.1643/0045-8511(2007)7[478:HDAOLS]2.0.CO;2Google Scholar
  58. Snover ML (2008) Ontogenetic habitat shifts in marine organisms: influencing factors and the impact of climate variability. Bull Mar Sci 83:53–67Google Scholar
  59. Snover ML, Hohn AA (2004) Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and Kemp’s ridley (Lepidochelys kempii) sea turtles. Fish Bull 102:682–692Google Scholar
  60. Snover ML, Avens L, Hohn AA (2007) Back-calculating length from skeletal growth marks in loggerhead sea turtles Caretta caretta. Endanger Species Res 3:95–104. doi: 10.3354/esr003095 CrossRefGoogle Scholar
  61. Snover M, Hohn A, Crowder L, Macko S (2010) Combining stable isotopes and skeletal growth marks to detect habitat shifts in juvenile loggerhead sea turtles Caretta caretta. Endanger Species Res 13:25–31. doi: 10.3354/esr00311 CrossRefGoogle Scholar
  62. Southwood A, Avens L (2009) Physiological, behavioral, and ecological aspects of migration in reptiles. J Comp Physiol B 180:1–23. doi: 10.1007/s00360-009-0415-8 CrossRefGoogle Scholar
  63. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  64. Turner Tomaszewicz CN, Seminoff JA, Ramirez MD, Kurle CM (2015) Effects of demineralization on the stable isotope analysis of bone samples. Rapid Commun Mass Spec 29(20):1879–1888. doi: 10.1002/rcm.7295 CrossRefGoogle Scholar
  65. Turner Tomaszewicz CN, Seminoff JA, Avens L, Kurle CM (2016) Methods for sampling sequential annual bone growth layers for stable isotope analysis. Methods Ecol Evol 7:556–564. doi: 10.1111/2041-210X.12522 CrossRefGoogle Scholar
  66. Van Buskirk J, Crowder LB (1994) Life-history variation in marine turtles. Copeia 1994:66–81. doi: 10.2307/1446672 CrossRefGoogle Scholar
  67. Vaughan JR (2009) Evaluation of length distributions and growth variance to improve assessment of the loggerhead sea turtle, (Caretta caretta). Master thesis, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USAGoogle Scholar
  68. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425CrossRefGoogle Scholar
  69. Wingfield JC, Schwabl H, Mattocks PWJ (1990) Endocrine mechanisms of migration. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 232–256CrossRefGoogle Scholar
  70. Witzell WN (2002) Immature Atlantic loggerhead turtles (Caretta caretta): suggested changes to the life history model. Herpetol Rev 33:266–269Google Scholar
  71. Wood SN (2006) Generalized Additive Models: an introduction with R. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  72. Zug GR (1990) Age determination of long-lived reptiles: some techniques for seaturtles. Ann Sci Nat 11:219–222Google Scholar
  73. Zug GR, Wynn AH, Ruckdeschel C (1986) Age determination of loggerhead sea turtles, Caretta caretta, by incremental growth marks in the skeleton. Smithson Contrib Zool 427:1–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Matthew D. Ramirez
    • 1
    Email author
  • Larisa Avens
    • 2
  • Jeffrey A. Seminoff
    • 3
  • Lisa R. Goshe
    • 2
  • Selina S. Heppell
    • 1
  1. 1.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA
  2. 2.NOAA National Marine Fisheries Service, Southeast Fisheries Science CenterBeaufort LaboratoryBeaufortUSA
  3. 3.NOAA National Marine Fisheries ServiceSouthwest Fisheries Science CenterLa JollaUSA

Personalised recommendations