, Volume 183, Issue 4, pp 1077–1086 | Cite as

Spatial heterogeneity of plant–soil feedbacks increases per capita reproductive biomass of species at an establishment disadvantage

  • Jean H. Burns
  • Angela J. Brandt
  • Jennifer E. Murphy
  • Angela M. Kaczowka
  • David J. Burke
Population ecology – original research


Plant–soil feedbacks have been widely implicated as a driver of plant community diversity, and the coexistence prediction generated by a negative plant–soil feedback can be tested using the mutual invasibility criterion: if two populations are able to invade one another, this result is consistent with stable coexistence. We previously showed that two co-occurring Rumex species exhibit negative pairwise plant–soil feedbacks, predicting that plant–soil feedbacks could lead to their coexistence. However, whether plants are able to reproduce when at an establishment disadvantage (“invasibility”), or what drivers in the soil might correlate with this pattern, are unknown. To address these questions, we created experimental plots with heterogeneous and homogeneous soils using field-collected conditioned soils from each of these Rumex species. We then allowed resident plants of each species to establish and added invader seeds of the congener to evaluate invasibility. Rumex congeners were mutually invasible, in that both species were able to establish and reproduce in the other’s resident population. Invaders of both species had twice as much reproduction in heterogeneous compared to homogeneous soils; thus the spatial arrangement of plant–soil feedbacks may influence coexistence. Soil mixing had a non-additive effect on the soil bacterial and fungal communities, soil moisture, and phosphorous availability, suggesting that disturbance could dramatically alter soil legacy effects. Because the spatial arrangement of soil patches has coexistence implications, plant–soil feedback studies should move beyond studies of mean effects of single patch types, to consider how the spatial arrangement of patches in the field influences plant communities.


Black box Coexistence Invasibility Soil nutrient availability Soil microbes 



We thank Squire Valleevue and Valley Ridge Farms, Case Western Reserve University (CWRU), especially A. Aldridge, C. Bond, and A. Locci, for making this experiment possible. We also thank the many students who helped with this experiment, especially C.G. Cope, G.A. del Pino, H. Flanagan, K. Grigsby, L. Huffman, J. Hooks, K. Keisewetter, S.C. Leahy, B. Ochocki, A. Osvaldsson, C. Yu, X. Zhao, and N.M. Zimmerman. Thanks to K.C. Abbott and R.E. Snyder for feedback on the ideas. Thanks to two anonymous reviewers and the editor for constructive feedback on the manuscript. Thanks to Holden Arboretum for lab space and financial support. We thank the National Science Foundation (DEB 1250170 to J.H.B.) and CWRU for funding.

Author contribution statement

JHB, AJB, and AMK designed and performed the experiments. JHB, AJB, JEM, AMK, and DJB collected and managed the data. JHB analyzed the data and wrote the first draft and all authors contributed to revisions.

Data accessibility

Data available from the Dryad Digital Repository:

Supplementary material

442_2017_3828_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2539 kb)


  1. Abbott KC, Karst J, Biederman LA, Borrett SR, Hastings A, Walsh V, Bever JD (2015) Spatial heterogeneity in soil microbes alters outcomes of plant competition. PLoS One. doi: 10.1371/journal.pone.0125788 Google Scholar
  2. Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104. doi: 10.1111/j.1461-0248.2006.00996.x CrossRefPubMedGoogle Scholar
  3. Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014) Phylogenetic conservatism in plant–soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621. doi: 10.1111/ele.12378 CrossRefPubMedGoogle Scholar
  4. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. N Phytol 157:465–473CrossRefGoogle Scholar
  5. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573CrossRefGoogle Scholar
  6. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi: 10.1016/j.tree.2010.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283. doi: 10.1146/annurev-micro-092611-150107 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46:305–325. doi: 10.1146/annurev-ecolsys-112414-054306 CrossRefGoogle Scholar
  9. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens HH, White J-SS (2008) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefGoogle Scholar
  10. Brandt AJ, de Kroon H, Reynolds HL, Burns JH (2013) Soil heterogeneity generated by plant–soil feedbacks has implications for species recruitment and coexistence. J Ecol 101:277–286CrossRefGoogle Scholar
  11. Brandt AJ, del Pino G, Burns JH (2014) Experimental protocol for manipulating plant-induced soil heterogeneity. J Vis Exp 85:e51580. doi: 10.3791/51580 Google Scholar
  12. Brinkman EP, Van der Putten WH, Bakker EJ, Verhoeven KJF (2010) Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073. doi: 10.1111/j.1365-2745.2010.01695.x CrossRefGoogle Scholar
  13. Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164. doi: 10.1128/AEM.68.3.1157-1164.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burns JH, Brandt AJ (2014) Heterogeneity in plant–soil feedbacks and resident population dynamics affect mutual invasibility. J Ecol 102:1048–1057. doi: 10.1111/1365-2745.12258 CrossRefGoogle Scholar
  15. Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7:plv030. doi: 10.1093/aobpla/plv030 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carmarinha-Silva A, Wos-Oxley ML, Jáuregui R, Becker K, Pieper DH (2012) Validating T-RFLP as a sensitive and high-throughput approach to assess bacterial diversity patterns in human anterior nares. FEMS Microbiol Ecol 79:98–108CrossRefGoogle Scholar
  17. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  18. Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249. doi: 10.1111/j.1574-6941.2006.00026.x CrossRefPubMedGoogle Scholar
  19. Crawley MJ (2007) The R book. John Wiley & Sons Inc., HobokenCrossRefGoogle Scholar
  20. Davison J, Oepik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of Arbuscular Mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One. doi: 10.1371/journal.pone.0041938 Google Scholar
  21. del Pino G, Brandt AJ, Burns JH (2015) Light heterogeneity interacts with plant-induced soil heterogeneity to affect plant trait expression. Plant Ecol 216:439–450. doi: 10.1007/s11258-015-0448-x CrossRefGoogle Scholar
  22. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev of Environ Resour 30:75–115CrossRefGoogle Scholar
  23. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68. doi: 10.1007/bf00038687 CrossRefGoogle Scholar
  24. Fukami T, Nakajima M (2011) Community assembly: alternative stable states or alternative transient states? Ecol Lett 14:973–984. doi: 10.1111/j.1461-0248.2011.01663.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fukami T, Nakajima M (2013) Complex plant–soil interactions enhance plant species diversity by delaying community convergence. J Ecol 101:316–324. doi: 10.1111/1365-2745.12048 CrossRefGoogle Scholar
  26. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi: 10.1007/s13213-010-0117-1 CrossRefGoogle Scholar
  27. Hendriks M, Ravenek JM, Smit-Tiekstra AE, van der Paauw JW, de Caluwe H, van der Putten WH, de Kroon H, Mommer L (2015) Root responses of grassland species to spatial heterogeneity of plant–soil feedback. Funct Ecol 29:177–186. doi: 10.1111/1365-2435.12367 CrossRefGoogle Scholar
  28. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi: 10.1023/a:1013351617532 CrossRefGoogle Scholar
  29. Hinsinger P, Herrmann L, Lesueur D, Robin A, Trap J, Waithaisong K, Plassard C (2015) Impact of roots, microorganisms and microfauna on the fate of soil phosphorus in the rhizosphere. Annu Plant Rev 48:377–408. doi: 10.1002/9781118958841.ch13 Google Scholar
  30. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229CrossRefPubMedGoogle Scholar
  31. Kardol P, De Deyn GB, Laliberté E, Mariotte P, Hawkes CV (2013) Biotic plant–soil feedbacks across temporal scales. J Ecol 101:309–315. doi: 10.1111/1365-2745.12046 CrossRefGoogle Scholar
  32. Kardol P, Veen GF, Teste FP, Perring MP (2015) Peeking into the black box: a trait-based approach to predicting plant–soil feedback. N Phytol 206:1–4. doi: 10.1111/nph.13283 CrossRefGoogle Scholar
  33. Ke P-J, Miki T, Ding T-S (2015) The soil microbial community predicts the importance of plant traits in plant–soil feedback. N Phytol 206:329–341. doi: 10.1111/nph.13215 CrossRefGoogle Scholar
  34. Keeney DR, Nelson DW (1983) Nitrogen inorganic forms. In: Page AL (ed) Agronomy: a series of monographs. Methods of soil analysis, Part 2. Chemical and microbiological properties, 2nd edition. Xxiv + 1159p, 9th edn. American Society of Agronomy, Inc. Soil Science Society of America, Inc, Madison, pp 643–698Google Scholar
  35. Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905. doi: 10.1016/s0038-0717(03)00120-2 CrossRefGoogle Scholar
  36. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 1:980–992CrossRefGoogle Scholar
  37. Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis, part 3, chemical methods. ASA and SSSA, Madison, pp 869–919Google Scholar
  38. Latz E, Eisenhauer N, Rall BC, Allan E, Roscher C, Scheu S, Jousset A (2012) Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J Ecol 100:597–604. doi: 10.1111/j.1365-2745.2011.01940.x CrossRefGoogle Scholar
  39. MacArthur R (1972) Geographical ecology. Princeton University Press, PrincetonGoogle Scholar
  40. Mack KML, Bever JD (2014) Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. J Ecol 102:1195–1201. doi: 10.1111/1365-2745.12269 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mack RN, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Mo Bot Gard 89:176–189. doi: 10.2307/3298562 CrossRefGoogle Scholar
  42. Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–756. doi: 10.1038/nature09273 CrossRefPubMedGoogle Scholar
  43. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi: 10.1111/j.1461-0248.2006.00987.x CrossRefPubMedGoogle Scholar
  44. Miki T, Ushio M, Fukui S, Kondoh M (2010) Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proc Natl Acad Sci USA 107:14251–14256. doi: 10.1073/pnas.0914281107 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107. doi: 10.1007/bf00038690 CrossRefGoogle Scholar
  46. Mulvaney RL (1996) Nitrogen: Inorganic forms. In: Sparks DL (ed) Methods of soils analysis, part 3, chemical methods. American Society of Agronomy and Soil Science Society of America, Madison (WI), pp 1123–1184Google Scholar
  47. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: Community ecology package. R package version 2.4-1. Accessed 14 Mar 2016
  48. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) In: Circular U (ed) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, vol 939. US Gov Print Office, WashingtonGoogle Scholar
  49. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  50. Reynolds HL, Hungate BA, Chapin FS, Dantonio CM (1997) Soil heterogeneity and plant competition in an annual grassland. Ecology 78:2076–2090. doi:10.1890/0012-9658(1997)078[2076:shapci];2Google Scholar
  51. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996. doi: 10.1104/pp.111.175448 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Robertson GP, Coleman DC, Bledsoe CS, Sollins P (1999) Standard soil methods for long-term ecological research. Oxford University Press, New YorkGoogle Scholar
  53. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi: 10.1016/s0734-9750(99)00014-2 CrossRefPubMedGoogle Scholar
  54. Schoolmaster DR, Snyder RE (2007) Invasibility in a spatiotemporally fluctuating environment is determined by the periodicity of fluctuations and resident turnover rates. Proc R Soc B Biol Sci 274:1429–1435. doi: 10.1098/rspb.2007.0118 CrossRefGoogle Scholar
  55. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci USA 100:13384–13389. doi: 10.1073/pnas.1835728100 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Siepielski AM, McPeek MA (2010) On the evidence for species coexistence: a critique of the coexistence program. Ecology 91:3153–3164. doi: 10.1890/10-0154.1 CrossRefPubMedGoogle Scholar
  57. USDA, NRCS (2016) The PLANTS database national plant data team, Greensboro, NC, USA, p 27401–4901. ( Accessed 22 Dec 2016
  58. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi: 10.1111/1365-2745.12054 CrossRefGoogle Scholar
  59. van Dorst J, Bissett A, Palmer AS, Brown M, Snape I, Stark JS, Raymond B, McKinlay J, Ji M, Winsley T, Ferrari BC (2014) Community fingerprinting in a sequencing world. FEMS Microbiol Ecol 89:316–330CrossRefPubMedGoogle Scholar
  60. Vibrans H (1998) Native maize field weed communities in south-central Mexico. Weed Res 38:153–166CrossRefGoogle Scholar
  61. Wubs ERJ, Bezemer TM (2016) Effects of spatial plant-soil feedback heterogeneity on plant performance in monocultures. J Ecol 104:364–376. doi: 10.1111/1365-2745.12521 CrossRefGoogle Scholar
  62. Zee PC, Fukami T (2015) Complex organism-environment feedbacks buffer species diversity against habitat fragmentation. Ecography 38:370–379. doi: 10.1111/ecog.01027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jean H. Burns
    • 1
  • Angela J. Brandt
    • 1
    • 2
  • Jennifer E. Murphy
    • 1
  • Angela M. Kaczowka
    • 1
    • 3
  • David J. Burke
    • 4
  1. 1.Department of BiologyCase Western Reserve UniversityClevelandUSA
  2. 2.Landcare ResearchDunedinNew Zealand
  3. 3.University of ArizonaTucsonUSA
  4. 4.Holden ArboretumKirtlandUSA

Personalised recommendations