Advertisement

Oecologia

, Volume 183, Issue 3, pp 887–898 | Cite as

Predator–prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods

  • Mathieu Santonja
  • Laetitia Minguez
  • Mark O. Gessner
  • Erik Sperfeld
Global change ecology – original research

Abstract

Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator–prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

Keywords

Brownification Chemical ecology Global change Zooplankton behavior Humic substances 

Notes

Acknowledgements

We thank Thierry Perez for the two-armed choice flume, Michael Sachtleben for technical assistance, Uta Mallok for DOC analyses, and Stella Berger, Thomas Mehner and Jens Nejstgaard for advice and discussion. Special thanks go to Anatole Boiché for his tireless assistance during the experiments and with zooplankton collections. MS received a GDR MediatEC 3658 research Grant (France) and LM and ES were supported by postdoctoral Grants through IGB’s Frontiers in Freshwater Science program. The study also benefitted from support received through the EU project MARS (contract no. 603378) funded under the 7th Framework Programme and the project ILES (SAW-2015-IGB-1) funded by the Leibniz Association.

Author contribution statement

MS originally formulated the idea. MS, MOG, LM and ES conceived and designed the experiments. MS and LM performed the experiments. MS, ES and LM analyzed the data. MS, LM, ES and MOG wrote the manuscript.

Supplementary material

442_2016_3801_MOESM1_ESM.docx (638 kb)
Supplementary material 1 (DOCX 638 kb)

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. doi: 10.4319/lo.2009.54.6_part_2.2283 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Balian EV, Segers H, Lévêque C, Martens K (2008) The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595:627–637. doi: 10.1007/s10750-007-9246-3 CrossRefGoogle Scholar
  3. Berzins B, Bertilsson J (1990) Occurrence of limnic micro-crustaceans in relation to pH and humic content in Swedish water bodies. Hydrobiologia 199:65–71. doi: 10.1007/BF00007834 CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 254:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  5. Brothers S, Köhler J, Attermeyer K, Grossart HP, Mehner T, Meyer N, Scharnweber K, Hilt S (2014) A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr 59:1388–1398. doi: 10.4319/lo.2014.59.4.1388 CrossRefGoogle Scholar
  6. Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:378–411. doi: 10.1016/j.envpol.2004.10.001 CrossRefGoogle Scholar
  7. Cohen JH, Forward RB (2005) Photobehaviour as an inducible defense in the marine copepod Calanopia americana. Limnol Oceanogr 50:1269–1277. doi: 10.4319/lo.2005.50.4.1269 CrossRefGoogle Scholar
  8. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  9. Erlandsson M, Buffam I, Fölster J, Laudon H, Temnerud J, Weyhenmeyer GA, Bishop K (2008) Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biol 14:1191–1198. doi: 10.1111/j.1365-2486.2008.01551.x CrossRefGoogle Scholar
  10. Estlander S, Nurminen L, Olin M, Vinni M, Immonen S, Rask M, Ruuhijarvi J, Horppila J, Lehtonen H (2010) Diet shifts and food selection of perch Perca fluviatilis and roach Rutilus rutilus in humic lakes of varying water colour. J Fish Biol 77:241–256. doi: 10.1111/j.1095-8649.2010.02682.x CrossRefPubMedGoogle Scholar
  11. Estlander S, Horppila J, Olin M, Vinni M, Lehtonen H, Rask M, Nurminen L (2012) Troubled by the humics—effects of water colour and interspecific competition on the feeding efficiency of planktivorous perch. Boreal Environ Res 17:305–312. doi: 10.1007/s10452-013-9448-x Google Scholar
  12. Euent S, Menzel R, Steinberg CEW (2008) Gender-specific lifespan modulation in Daphnia magna by a dissolved humic substances preparation. Ann Environ Sci 2:7–10Google Scholar
  13. Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predatory-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724. doi: 10.1139/Z10-029 CrossRefGoogle Scholar
  14. Fisher HS, Wong BB, Rosenthal GG (2006) Alteration of the chemical environment disrupts communication in a freshwater fish. Proc R Soc B 273:1187–1193. doi: 10.1098/rspb.2005.3406 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581. doi: 10.1146/annurev.ecolsys.35.021103.105711 CrossRefGoogle Scholar
  16. Folt C, Goldman CR (1981) Allelopathy between zooplankton: a mechanism for interference competition. Science 213:1133–1135. doi: 10.1126/science.213.4512.1133 CrossRefPubMedGoogle Scholar
  17. Frank KT, Petrie B, Cho JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623. doi: 10.1126/science.1113075 CrossRefPubMedGoogle Scholar
  18. Gorokhova E, Lehtiniemi M, Motwani NH (2013) Trade-offs between predation risk and growth benefits in copepods Eurytemora affinis with contrasting pigmentation. PLoS ONE 8:e71385. doi: 10.1371/journal.pone.0071385 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706. doi: 10.4319/lo.1996.41.4.0698 CrossRefGoogle Scholar
  20. Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–18. doi: 10.1111/j.1529-8817.1972.tb03995.x Google Scholar
  21. Guthrie DM, Muntz WRA (1993) Role of vision in fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London, pp 89–128CrossRefGoogle Scholar
  22. Gutierrez MF, Gagneten AM, Paggi JC (2011) Behavioural responses of two cladocerans and two copepods exposed to fish kairomones. Mar Freshw Behav Physiol 44:289–303. doi: 10.1080/10236244.2011.633770 CrossRefGoogle Scholar
  23. Heuschele J, Selander E (2014) The chemical ecology of copepods. J Plankton Res 36:895–913. doi: 10.1093/plankt/fbu025 CrossRefGoogle Scholar
  24. Hongve D, Riise G, Kristiansen JF (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—a result of increased precipitation? Aquat Sci 66:231–238. doi: 10.1007/s00027-004-0708-7 CrossRefGoogle Scholar
  25. Horppila J, Estlander S, Olin M, Pihlajamäki J, Vinni M, Nurminen L (2011) Gender-dependent effects of water quality and conspecific density on the feeding rate of fish—factors behind sexual growth dimorphism. Oikos 120:855–861. doi: 10.1111/j.1600-0706.2010.19056.x CrossRefGoogle Scholar
  26. Hubbard PC, Barata EN, Canario AVM (2002) Possible disruption of pheromonal communication by humic acid in the goldfish, Carassius auratus. Aquat Toxicol 60:169–183. doi: 10.1016/S0166-445X(02)00002-4 CrossRefPubMedGoogle Scholar
  27. Jamieson CD (2005) Coexistence of two similar copepod species, Eudiaptomus gracilis and E. graciloides: the role of differential predator avoidance. Hydrobiologia 542:191–202. doi: 10.1007/1-4020-4111-X_20 CrossRefGoogle Scholar
  28. Jonsson M, Ranaker L, Anders Nilsson P, Brönmark C (2012) Prey-type-dependent foraging of young-of-the-year fish in turbid and humic environments. Ecol Freshw Fish 21:461–468. doi: 10.1111/j.1600-0633.2012.00565.x CrossRefGoogle Scholar
  29. Jonsson M, Ranaker L, Nilsson PA, Brönmark C (2013) Foraging efficiency and prey selectivity in a visual predator: differential effects of turbid and humic water. Can J Fish Aquat Sci 70:1685–1690. doi: 10.1139/cjfas-2013-0150 CrossRefGoogle Scholar
  30. Kritzberg ES, Ekström SM (2012) Increasing iron concentrations in surface waters—a factor behind brownification? Biogeosciences 9:1465–1478. doi: 10.5194/bg-9-1465-2012 CrossRefGoogle Scholar
  31. Kullberg A, Bishop KH, Hargeby A, Jansson M, Petersen RC (1993) The ecological significance of dissolved organic carbon in acidified waters. Ambio 22:331–337Google Scholar
  32. Meems N, Steinberg CEW, Wiegand C (2004) Direct and interacting toxicological effects on the waterflea (Daphnia magna) by natural organic matter, synthetic humic substances and cypermethrin. Sci Total Environ 319:123–136. doi: 10.1016/S0048-9697(03)00445-5 CrossRefPubMedGoogle Scholar
  33. Mehner T, Emmrich M, Kasprzak P (2011) Discrete thermal windows cause opposite response of sympatric cold-water fish species to annual temperature variability. Ecosphere 2:1–16. doi: 10.1890/ES11-00109.1 CrossRefGoogle Scholar
  34. Meinelt T, Phan TM, Zwirnmann E, Krüger A, Paul A, Wienke A, Steinberg CEW (2007) Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substances of different origin. Aquat Toxicol 83:93–103. doi: 10.1016/j.aquatox.2007.03.013 CrossRefPubMedGoogle Scholar
  35. Mesquita R, Canario AVM, Melo E (2003) Partition of fish pheromones between water and aggregates of humic acids. Consequences for sexual signaling. Environ Sci Technol 37:742–746. doi: 10.1021/es025987e CrossRefPubMedGoogle Scholar
  36. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, Washington, DCGoogle Scholar
  37. Minto WJ, Arcifa MS, Perticarrari A (2010) Experiments on the influence of Chaoborus brasiliensis Theobald, 1901 (Diptera: Chaoboridae) on the diel vertical migration of microcrustaceans from Lake Monte Alegre, Brazil. Braz J Biol 70:25–35. doi: 10.1590/S1519-69842010000100006 CrossRefPubMedGoogle Scholar
  38. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92. doi: 10.1111/j.1461-0248.2008.01258.x CrossRefPubMedGoogle Scholar
  39. Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540. doi: 10.1038/nature06316 CrossRefPubMedGoogle Scholar
  40. Neill WE (1990) Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345:524–526. doi: 10.1038/345524a0 CrossRefGoogle Scholar
  41. Neill WE (1992) Population variation in the ontogeny of predator-induced vertical migration of copepods. Nature 356:54–57. doi: 10.1038/356054a0 CrossRefGoogle Scholar
  42. Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463. doi: 10.1016/S0166-445X(02)00204-7 CrossRefPubMedGoogle Scholar
  43. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agr Food Chem 51:3273–3279. doi: 10.1021/jf0262256 CrossRefGoogle Scholar
  44. Ranaker L, Jonsson M, Nilsson PA, Brönmark C (2012) Effects of brown and turbid water on piscivore–prey fish interactions along a visibility gradient. Freshw Biol 57:1761–1768. doi: 10.1111/j.1365-2427.2012.02836.x CrossRefGoogle Scholar
  45. Ranaker L, Persson J, Jonsson M, Nilsson PA, Brönmark C (2014) Piscivore-prey fish interactions: mechanisms behind diurnal patterns in prey selectivity in brown and clear water. PLoS ONE 9:e102002. doi: 10.1371/journal.pone.0102002 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ringelberg J, Flik BJG, Lindenaar D, Royackers K (1991) Diel vertical migration of Eudiaptomus gracilis during a short summer period. Hydrobiol Bull 25:77–84. doi: 10.1007/BF02259593 CrossRefGoogle Scholar
  47. Robidoux M, del Giorgio P, Derry A (2015) Effects of humic stress on the zooplankton from clear and DOC-rich lakes. Freshw Biol 60:1263–1278. doi: 10.1111/fwb.12560 CrossRefGoogle Scholar
  48. Roulet N, Moore TR (2006) Environmental chemistry: browning the waters. Nature 444:283–284. doi: 10.1038/444283a CrossRefPubMedGoogle Scholar
  49. Schmitz OJ (2005) Behaviour of predators and prey and links with population-level processes. In: Barbarosa P, Castellanos I (eds) Ecology of predator-prey interactions. Oxford University Press, New York, pp 256–278Google Scholar
  50. Shurin JB, Winder M, Adrian R, Keller W, Matthews B, Paterson AM, Paterson MJ, Pinel-Alloul B, Rusak JA, Yan ND (2010) Environmental stability and lake zooplankton diversity—contrasting effects of chemical and thermal variability. Ecol Lett 13:453–463. doi: 10.1111/j.1461-0248.2009.01438.x CrossRefPubMedGoogle Scholar
  51. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–38. doi: 10.1016/0002-9343(91)90281-2 CrossRefGoogle Scholar
  52. Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, LarsenS Lennon JT, Read JS, Sadro S, Saros JE (2015) Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18:376–389. doi: 10.1007/s10021-015-9848-y CrossRefGoogle Scholar
  53. Steinberg CEW, Kamara S, Prokhotskaya VY, Manusadzianas L, Karasyova TA, Timofeyev MA, Jie Z, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R (2006) Dissolved humic substances—ecological driving forces from the individual to the ecosystem level? Freshw Biol 51:1189–1210. doi: 10.1111/j.1365-2427.2006.01571.x CrossRefGoogle Scholar
  54. Steinberg CEW, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, Menzel R (2010) Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223–236. doi: 10.1007/s10750-010-0334-4 CrossRefGoogle Scholar
  55. Svensson JE (1992) The influence of visibility and escape ability on sex-specific susceptibility to fish predation in Eudiaptomus gracilis (Copepoda, Crustacea). Hydrobiologia 234:143–150. doi: 10.1007/BF00014246 CrossRefGoogle Scholar
  56. Symons CC, Shurin JB (2016) Climate constrains lake community and ecosystem responses to introduced predators. Proc R Soc B 283:20160825. doi: 10.1098/rspb.2016.0825 CrossRefGoogle Scholar
  57. Thorp JH, Covich AP (2001) An overview of freshwater habitats. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego, pp 19–41CrossRefGoogle Scholar
  58. Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Bedulina DS, Kolesnichenko VV, Pflugmacher S, Steinberg CEW (2006) Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris (Sars) and Gammarus tigrinus (Sexton). Sci Total Environ 366:673–681. doi: 10.1016/j.scitotenv.2006.02.003 CrossRefPubMedGoogle Scholar
  59. von Elert E, Loose CJ (1996) Predator-induced diel vertical migration in Daphnia—enrichment and preliminary chemical characterization of a kairomone exuded by fish. J Chem Ecol 22:885–895. doi: 10.1007/BF02029942 CrossRefGoogle Scholar
  60. Walseng B, Hessen DO, Halvorsen G, Schartau AK (2006) Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol Oceanogr 51:2600–2606CrossRefGoogle Scholar
  61. Williamson CE, Morris DP, Pace ML, Olson AG (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44:795–803. doi: 10.1016/j.scitotenv.2006.02.003 CrossRefGoogle Scholar
  62. Winfield IJ, Townsend CR (1983) The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia 60:406–411. doi: 10.1007/BF00376860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut Méditerranéen de Biodiversité et d’Ecologie (IMBE)Aix Marseille Université, CNRS, IRD, Avignon UniversitéMarseille Cedex 03France
  2. 2.Université Rennes 1, UMR CNRS 6553 ECOBIORennesFrance
  3. 3.Department Experimental LimnologyLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
  4. 4.Department of EcologyBerlin Institute of Technology (TU Berlin)BerlinGermany
  5. 5.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  6. 6.Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES), University of OsloOsloNorway

Personalised recommendations