, Volume 183, Issue 3, pp 763–773 | Cite as

Predator identity and time of day interact to shape the risk–reward trade-off for herbivorous coral reef fishes

  • Laura B. Catano
  • Mark B. Barton
  • Kevin M. Boswell
  • Deron E. Burkepile
Community ecology – original research


Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator–prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.


Florida Keys coral reefs Landscape of fear Behaviorally mediated indirect interaction Predator–prey interactions Predator hunting mode Predation risk Trophic cascade 



Funding for this work was provided by an NOAA Coral Reef Conservation Program grant to D.E.B and B.I. Ruttenberg, an award from Florida International University to K.M.B, a cooperative agreement with NOAA (NA10OAR4320143), and a generous gift from the Medina Family Foundation to the Medina Aquarius Program. This is contribution #20 from the Marine Environment and Research Center in the Institute for Water and Environment at Florida International University. We are indebted to M. Heithaus, J. Fourqurean, A. Shantz, C. Lopez, M. Rojas, R. Malossi, A. Zenone, and C. Catano for their time and advice with this project. We thank the personnel of FIU’s Aquarius Reef Base, Key Largo, FL, USA, for their assistance facilitating this research. This work was conducted with permission from the Florida Keys National Marine Sanctuary under permit no. FKNMS-2013-141.

Author contribution statement

LBC, DEB, KMB, and MBB designed the study; LBC and MBB performed the research; LBC conducted statistical analyses; LBC, DEB, and KMB wrote the manuscript; all authors contributed to editing.

Supplementary material

442_2016_3794_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 13 kb)


  1. Adam TC, Burkepile DE, Ruttenberg BI, Paddack MJ (2015) Herbivory and the resilience of Caribbean coral reefs: knowledge gaps and implications for management. Mar Ecol Prog Ser 520:1–20. doi: 10.3354/meps11170 CrossRefGoogle Scholar
  2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar
  3. Bohnsack JA, Harper DE, Mcclellan DB (1994) Fisheries trends from Monroe County, Florida. Bull Mar Sci 54:982–1018Google Scholar
  4. Burkepile DE, Allgeier JE, Shantz AA et al (2013) Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci Rep 3:1493. doi: 10.1038/srep01493 CrossRefPubMedGoogle Scholar
  5. Burkholder DA, Heithaus MR, Fourqurean JW et al (2013) Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J Anim Ecol 82:1192–1202. doi: 10.1111/1365-2656.12097 CrossRefPubMedGoogle Scholar
  6. Catano LB, Shantz AA, Burkepile DE (2014) Predation risk, competition and territorial damselfishes as drivers of herbivore foraging on Caribbean coral reefs. Mar Ecol Prog Ser 511:193–207CrossRefGoogle Scholar
  7. Catano LB, Gunn BK, Kelley MC, Burkepile DE (2015a) Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLoS One 10:1–21. doi: 10.5061/dryad.j83jh.Funding CrossRefGoogle Scholar
  8. Catano LB, Rojas MC, Malossi RJ et al (2015b) Reefscapes of fear: predation risk and reef heterogeneity interact to shape herbivore foraging behaviour. J Anim Ecol 85:146–156. doi: 10.1111/1365-2656.12440 CrossRefPubMedGoogle Scholar
  9. Creel S (2011) Toward a predictive theory of risk effects: hypotheses for prey attributes and compensatory mortality. Ecology 92:2190–2195CrossRefPubMedGoogle Scholar
  10. Danilowicz BS, Sale PF (1999) Relative intensity of predation on the French grunt, Haemulon favolineatum, during diurnal, dusk, and nocturnal periods on a coral reef. Mar Biol 133:337–343CrossRefGoogle Scholar
  11. de Sylva D (1963) Systematics and life history of the great barracuda Sphyraena barracuda (Walbaum). Toxicon 5:227–232Google Scholar
  12. Dill L, Heithaus MR, Walters C (2003) Behaviorally mediated indirect interactions in marine communities and their conservation implications. Ecology 84:1151–1157CrossRefGoogle Scholar
  13. Dubin R, Baker J (1982) Two types of cover-seeking behavior at sunset by the princess parrotfish, Scarus taeniopterus, at Barbados, West Indies. Bull Mar Sci 32:572–583Google Scholar
  14. Einfalt LM, Grace EJ, Wahl DH (2012) Effects of simulated light intensity, habitat complexity and forage type on predator–prey interactions in walleye Sander vitreus. Ecol Freshw Fish 21:560–569. doi: 10.1111/j.1600-0633.2012.00576.x CrossRefGoogle Scholar
  15. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet earth. Science 333(80):301–306. doi: 10.1126/science.1205106 CrossRefPubMedGoogle Scholar
  16. Farmer NA, Ault JS (2011) Grouper and snapper movements and habitat use in Dry Tortugas, Florida. Mar Ecol Prog Ser 433:169–184. doi: 10.3354/meps09198 CrossRefGoogle Scholar
  17. Halpern BS (2003) The Impact of marine reserves: do reserves work and does reserve size matter? Ecol Appl 13:S117–S137CrossRefGoogle Scholar
  18. Halpern BS, Warner RR (2002) Marine reserves have rapid and lasting effects. Ecol Lett 5:361–366. doi: 10.1046/j.1461-0248.2002.00326.x CrossRefGoogle Scholar
  19. Hay ME, Paul VJ, Lewis SM et al (1988) Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia 75:233–245. doi: 10.1007/BF00378604 CrossRefGoogle Scholar
  20. Heithaus MR, Frid A, Wirsing AJ et al (2007) State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. J Anim Ecol 76:837–844. doi: 10.1111/j.1365-2656.2007.01260.x CrossRefPubMedGoogle Scholar
  21. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210. doi: 10.1016/j.tree.2008.01.003 CrossRefPubMedGoogle Scholar
  22. Heithaus MR, Wirsing AJ, Burkholder D, Thomson J (2009) Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics. J Anim Ecol 78:556–562. doi: 10.1111/j.1365-2656.2008.01512.x CrossRefPubMedGoogle Scholar
  23. Helfman GS (1986) Fish behavior by day, night and twilight. In: Pitcher TJ (ed) The behavior of teleost fishes. Chapman and Hall, London, pp 479–512Google Scholar
  24. Helfman GS (1989) Threat-sensitive predator avoidance in damselfish–trumpetfish interactions. Behav Ecol Sociobiol 24:47–58. doi: 10.1007/BF00300117 CrossRefGoogle Scholar
  25. Hill JM, Weissburg MJ (2013) Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments. Oecologia 172:79–91. doi: 10.1007/s00442-012-2488-4 CrossRefPubMedGoogle Scholar
  26. Hobson ES (1972) Feeding patterns among tropical reef fishes. Am Sci 63:381–392Google Scholar
  27. Holbrook SJ, Schmitt RJ (2002) Competition for shelter and space causes density-dependent predation mortality on damselfishes. Ecology 83:2855–2868CrossRefGoogle Scholar
  28. Jennings S, Grandcourt EM, Polunin NVC (1996) The effects of fishing on the diversity, biomass and trophic structure of Seychelles’ reef fish communities. Coral Reefs 14:225–235CrossRefGoogle Scholar
  29. Kesavaraju B, Damal K, Juliano SA (2007) Threat-sensitive behavioral responses to concentrations of water-borne cues from predation. Ethology 113:199–206. doi: 10.1111/j.1439-0310.2006.01317.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Koch V (2011) The spatial ecology of black groupers (Mycteroperca bonaci) in the upper Florida keys. Masters Thesis, University of Miami, Coral GablesGoogle Scholar
  31. Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst 34:153–181. doi: 10.1146/annurev.ecolsys.34.011802.132435 CrossRefGoogle Scholar
  32. Liley S, Creel S (2007) What best explains vigilance in elk: characteristics of prey, predators, or the environment? Behav Ecol 19:245–254. doi: 10.1093/beheco/arm116 CrossRefGoogle Scholar
  33. Lima SL (1988) Initiation and termination of daily feeding in dark-eyed juncos: influences of predation risk and energy reserves. Oikos 53:3–11CrossRefGoogle Scholar
  34. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  35. Madin EMP, Gaines SD, Madin JS, Warner RR (2010a) Fishing indirectly structures macroalgal assemblages by altering herbivore behavior. Am Nat 176:785–801. doi: 10.1086/657039 CrossRefPubMedGoogle Scholar
  36. Madin EMP, Gaines SD, Warner RR (2010b) Field evidence for pervasive indirect effects of fishing on prey foraging behavior. Ecology 91:3563–3571CrossRefPubMedGoogle Scholar
  37. Martin CW, Fodrie FJ, Heck KL, Mattila J (2010) Differential habitat use and antipredator response of juvenile roach (Rutilus rutilus) to olfactory and visual cues from multiple predators. Oecologia 162:893–902. doi: 10.1007/s00442-010-1564-x CrossRefPubMedGoogle Scholar
  38. Miller JRB, Ament JM, Schmitz OJ (2014) Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. J Anim Ecol 83:214–222. doi: 10.1111/1365-2656.12111 CrossRefPubMedGoogle Scholar
  39. Monclús R, Palomares F, Tablado Z et al (2009) Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. Oecologia 158:615–623. doi: 10.1007/s00442-008-1201-0 CrossRefPubMedGoogle Scholar
  40. Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vis Res 13:1829–1874CrossRefPubMedGoogle Scholar
  41. O’Toole AC, Murchie KJ, Pullen C et al (2010) Locomotory activity and depth distribution of adult great barracuda (Sphyraena barracuda) in Bahamian coastal habitats determined using acceleration and pressure biotelemetry transmitters. Mar Freshw Res 61:1446. doi: 10.1071/MF10046 CrossRefGoogle Scholar
  42. O’Toole AC, Danylchuk AJ, Goldberg TL et al (2011) Spatial ecology and residency patterns of adult great barracuda (Sphyraena barracuda) in coastal waters of The Bahamas. Mar Biol 158:2227–2237. doi: 10.1007/s00227-011-1728-1 CrossRefGoogle Scholar
  43. Polunin NVC, Harmelin-Vivien M, Galzin R (1995) Contrasts in algal food processing among five herbivorous coral-reef fishes. J Fish Biol 47:455–465CrossRefGoogle Scholar
  44. Porter HT, Motta PJ (2004) A comparison of strike and prey capture kinematics of three species of piscivorous fishes: florida gar (Lepisosteus platyrhincus), redfin needlefish (Strongylura notata), and great barracuda (Sphyraena barracuda). Mar Biol 145:989–1000. doi: 10.1007/s00227-004-1380-0 CrossRefGoogle Scholar
  45. Preisser EL, Bolnick DI, Benard ME (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509CrossRefGoogle Scholar
  46. Preisser EL, Orrock JL, Schmitz OJ (2007) Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. Ecology 88:2744–2751CrossRefPubMedGoogle Scholar
  47. R Core Team (2013) R: A language and environment for statistical computing (v 3.1.3). R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  48. Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:655–847Google Scholar
  49. Reynolds PL, Bruno JF (2013) Multiple predator species alter prey behavior, population growth, and a trophic cascade in a model estuarine food web. Ecol Monogr 83:119–132. doi: 10.1890/11-2284.1 CrossRefGoogle Scholar
  50. Ripple W, Beschta R (2007) Restoring Yellowstone’s aspen with wolves. Biol Conserv 138:514–519. doi: 10.1016/j.biocon.2007.05.006 CrossRefGoogle Scholar
  51. Rizzari JR, Frisch AJ, Hoey AS, McCormick MI (2014) Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123:829–836. doi: 10.1111/oik.01318 CrossRefGoogle Scholar
  52. Sandin SA, McNamara DE (2012) Spatial dynamics of benthic competition on coral reefs. Oecologia 168:1079–1090. doi: 10.1007/s00442-011-2156-0 CrossRefPubMedGoogle Scholar
  53. Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426CrossRefPubMedGoogle Scholar
  54. Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319(80):952–954CrossRefPubMedGoogle Scholar
  55. Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–1399CrossRefGoogle Scholar
  56. Teplitsky C, Plénet S, Joly P (2005) Costs and limits of dosage response to predation risk: to what extent can tadpoles invest in anti-predator morphology? Oecologia 145:364–370. doi: 10.1007/s00442-005-0132-2 CrossRefPubMedGoogle Scholar
  57. Thaker M, Vanak AT, Owen CR et al (2011) Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92:398–407CrossRefPubMedGoogle Scholar
  58. Thompson R, Munro JL (1978) Aspects of the biology and ecology of Caribbean reef fishes: serranidae (hinds and groupers). J Fish Biol 12:115–146CrossRefGoogle Scholar
  59. Valeix M, Loveridge AJ, Chamaillé-Jammes S et al (2009) Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology 90:23–30CrossRefPubMedGoogle Scholar
  60. Werner EE, Anholt BR (1993) Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am Nat 142:242–272CrossRefPubMedGoogle Scholar
  61. Wirsing AJ, Cameron KE, Heithaus MR (2010) Spatial responses to predators vary with prey escape mode. Anim Behav 79:531–537. doi: 10.1016/j.anbehav.2009.12.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Laura B. Catano
    • 1
    • 2
  • Mark B. Barton
    • 1
  • Kevin M. Boswell
    • 1
  • Deron E. Burkepile
    • 1
    • 3
  1. 1.Marine Science Program, Department of Biological SciencesFlorida International UniversityNorth MiamiUSA
  2. 2.Department of BiologyUniversity of Missouri, St. LouisSt. LouisUSA
  3. 3.Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations