, Volume 183, Issue 2, pp 571–586 | Cite as

Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals

  • Emily F. SollyEmail author
  • Ika Djukic
  • Pavel A. Moiseev
  • Nelly I. Andreyashkina
  • Nadezhda M. Devi
  • Hans Göransson
  • Valeriy S. Mazepa
  • Stepan G. Shiyatov
  • Marina R. Trubina
  • Fritz H. Schweingruber
  • Martin Wilmking
  • Frank Hagedorn
Global change ecology – original research


Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13–79% with elevation, paralleled by a 35–72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest–tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4–8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.


Treeline shifts Ural Mountains Fine roots Extramatrical mycorrhizal mycelia Global change 



This work was performed within the framework of the joint projects conceived by the Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Science (IPAE) and the Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL). The project was supported by the following grants: ERA.Net RUS STProject-207, COST Action ES1203 SENFOR (SBFI Nr. C14.0037), RFBR-15-29-02449.

Author contribution statement

EFS and FH designed the analysis; EFS analysed the data; EFS and FH wrote the paper; PAM, FH, and SGS conceived the experimental design in the field; ID, PAM, NIA, NMD, VSM, SGS, MRT, MW, and FH conducted fieldwork and provided data; EFS and FHS analysed the fine root biomass; ID and HG analysed the extramatrical mycelia production; all co-authors substantially revised the paper.

Supplementary material

442_2016_3785_MOESM1_ESM.docx (151 kb)
Supplementary material 1 (DOCX 151 kb)


  1. Anadon-Rosell A, Rixen C, Cherubini P, Wipf S, Hagedorn F, Dawes MA (2014) Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLoS One 9:e100577CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreyashkina NI, Peshkova NV (2005) Changes in plant cover structure and productivity along an altitudinal gradient (the Polar Urals). Russ J Ecol 36:354–357. doi: 10.1007/s11184-005-0084-0 CrossRefGoogle Scholar
  3. Assessment ACI (2005) Scientific Report. Cambridge University Press. Accessed 22 July 2016
  4. Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473. doi: 10.1111/j.1469-8137.2011.03927.x CrossRefPubMedGoogle Scholar
  5. Bai E, Li S, Xu W, Li W, Dai W, Jiang P (2013) A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:441–451CrossRefGoogle Scholar
  6. Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51. doi: 10.1007/s11104-006-9024-4 CrossRefGoogle Scholar
  7. Berg B (1984) Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol Biochem 16:609–617CrossRefGoogle Scholar
  8. Braeker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitteilungen Forstliche Bundes-Versuchsanstalt, Wien 142:75–102Google Scholar
  9. Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M (2014) Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514:213–217. doi: 10.1038/nature13731 PubMedGoogle Scholar
  10. Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711CrossRefGoogle Scholar
  11. Chen H, Rygiewicz P, Johnson M, Harmon M, Tian H, Tang J (2008) Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. J Environ Qual 37:1327–1336CrossRefPubMedGoogle Scholar
  12. Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404. doi: 10.1111/j.1469-8137.2006.01778.x CrossRefPubMedGoogle Scholar
  13. Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay R, Wardle D, Lindahl B (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618CrossRefPubMedGoogle Scholar
  14. Crawley MJ (2012) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  15. Cutler DF, Rudall P, Gasson P, Gale R (1987) Root identification manual of trees and shrubs. A guide to the anatomy of roots of trees and shrubs hardy in Britain and Northern Europe. Chapman and Hall, LondonGoogle Scholar
  16. Dawes MA, Philipson CD, Fonti P, Bebi P, Hättenschwiler S, Hagedorn F, Rixen C (2015) Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob Chang Biol 21:2005–2021CrossRefPubMedGoogle Scholar
  17. Dawes MA, Schleppi P, Hättenschwiler S, Rixen C, Hagedorn F (2016) Soil warming opens the nitrogen cycle at the alpine treeline. Glob Chang Biol doi: 10.1111/gcb.13365
  18. Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Chang Biol 14:1581–1591. doi: 10.1111/j.1365-2486.2008.01583.x CrossRefGoogle Scholar
  19. Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27. doi: 10.1007/s11104-013-1630-3 CrossRefGoogle Scholar
  20. Esper J, Schweingruber FH (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 31:6. doi: 10.1029/2003GL019178 CrossRefGoogle Scholar
  21. Fu X, Wang J, Di Y, Wang H (2015) Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests. PLoS One 10:e0128894CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gärtner H, Schweingruber FH (2013) Microscopic preparation techniques for plant stem analysis. Verlag Dr Kessel, Remagen, p 78Google Scholar
  23. Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768. doi: 10.1111/j.1466-8238.2010.00558.x CrossRefGoogle Scholar
  24. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grafius DR, Malanson GP (2015) Biomass distributions in dwarf tree, krummholz, and tundra vegetation in the alpine treeline ecotone. Phys Geogr 36:337–352CrossRefGoogle Scholar
  26. Grayston S, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  27. Hagedorn F, Shiyatov SG, Mazepa VS, Devi NM, Grigor’ev AA, Bartysh AA, Fomin VV, Kapralov DS, Terent’ev M, Bugman H, Rigling A, Moiseev PA (2014) Treeline advances along the Urals mountain range–driven by improved winter conditions? Glob Chang Biol 20:3530–3543. doi: 10.1111/gcb.12613 CrossRefPubMedGoogle Scholar
  28. Handa IT, Hagedorn F, Hättenschwiler S (2008) No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline. Funct Ecol 22:348–358CrossRefGoogle Scholar
  29. Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hattenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221. doi: 10.1038/nature13247 CrossRefPubMedGoogle Scholar
  30. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049CrossRefPubMedGoogle Scholar
  31. Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Chang 2:875–879CrossRefGoogle Scholar
  32. Helmisaari H-S, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504CrossRefPubMedGoogle Scholar
  33. Hertel D, Schöling D (2011a) Below-ground response of Norway spruce to at Mt. Brocken (Germany)—A re-assessment of Central Europe’s northernmost treeline. Flora-Morphol Distrib Funct Ecol Plants 206:127–135CrossRefGoogle Scholar
  34. Hertel D, Schöling D (2011b) Norway spruce shows contrasting changes in below-versus above-ground carbon partitioning towards the alpine treeline: evidence from a central European case study. Arct Antarct Alp Res 43:46–55CrossRefGoogle Scholar
  35. Hiltbrunner D, Zimmermann S, Hagedorn F (2013) Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry 115:251–266CrossRefGoogle Scholar
  36. Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339CrossRefPubMedGoogle Scholar
  37. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569CrossRefPubMedGoogle Scholar
  38. Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefPubMedGoogle Scholar
  39. Holmes RL (1995) Dendrochronological program library (computer program). The University of Arizona, Laboratory of Tree Ring Research, Tucson, ArizonaGoogle Scholar
  40. Holtmeier F-K (2009) Mountain timberlines: ecology, patchiness, and dynamics. Springer, BerlinCrossRefGoogle Scholar
  41. IPCC (2013) Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  42. Iversen CM, Sloan VL, Sullivan PF, Euskirchen ES, McGuire AD, Norby RJ, Walker AP, Warren JM, Wullschleger SD (2015) The unseen iceberg: plant roots in arctic tundra. New Phytol 205:34–58CrossRefPubMedGoogle Scholar
  43. Kammer A, Hagedorn F, Shevchenko I, Leifeld J, Guggenberger G, Goryacheva T, Rigling A, Moiseev P (2009) Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob Chang Biol 15:1570–1583. doi: 10.1111/j.1365-2486.2009.01856.x CrossRefGoogle Scholar
  44. Kernaghan G, Harper K (2001) Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 24:181–188CrossRefGoogle Scholar
  45. Kirdyanov AV, Hagedorn F, Knorre AA, Fedotova EV, Vaganov EA, Naurzbaev MM, Moiseev PA, Rigling A (2012) 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 41:56–67CrossRefGoogle Scholar
  46. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  47. Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, BaselCrossRefGoogle Scholar
  48. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732CrossRefGoogle Scholar
  49. Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77CrossRefGoogle Scholar
  50. Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013) Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant Soil 366:287–303. doi: 10.1007/s11104-012-1431-0 CrossRefGoogle Scholar
  51. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230. doi: 10.1016/j.baae.2006.02.004 CrossRefGoogle Scholar
  52. Liang E, Wang Y, Piao S, Lu X, Camarero JJ, Zhu H, Zhu L, Ellison AM, Ciais P, Peñuelas J (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci 113:4380–4385. doi: 10.1073/pnas.1520582113 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu Y, Chen Y, Zhang J, Yang W, Peng Z, He X, Deng C, He R (2016) Changes in foliar litter decomposition of woody plants with elevation across an alpine forest–tundra ecotone in eastern Tibet Plateau. Plant Ecol 217:495–504. doi: 10.1007/s11258-016-0594-9 CrossRefGoogle Scholar
  54. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695. doi: 10.2307/3450611 CrossRefGoogle Scholar
  55. Luo T, Brown S, Pan Y, Shi P, Ouyang H, Yu Z, Zhu H (2005) Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For Ecol Manag 206:349–363CrossRefGoogle Scholar
  56. Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci 108:9508–9512CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moiseev PA, Shiyatov SG (2003) Vegetation dynamics at the treeline ecotone in the Ural highlands Russia. Alpine biodiversity in Europe. Springer, Berlin, pp 423–435Google Scholar
  58. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226CrossRefGoogle Scholar
  59. Myers-Smith IH, Bruce CF, Martin W, Martin H, Trevor L, Daan B, Ken DT, Marc M-F, Ute S-K, Esther L, Stéphane B, Pascale R, Luise H, Andrew T, Laura Siegwart C, Stef W, Jelte R, Shelly AR, Niels Martin S, Gabriela S-S, Sonja W, Christian R, Cécile BM, Susanna V, Scott G, Laia A-H, Sarah E, Virve R, Jeffrey W, Paul G, Howard EE, David SH (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509CrossRefGoogle Scholar
  60. Nylund JE, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology. Academic Press, London, pp 77–88Google Scholar
  61. Olthof I, Pouliot D (2010) Treeline vegetation composition and change in Canada’s western Subarctic from AVHRR and canopy reflectance modeling. Remote Sens Environ 114:805–815. doi: 10.1016/j.rse.2009.11.017 CrossRefGoogle Scholar
  62. Parker TC, Subke J-A, Wookey PA (2015) Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob Chang Biol 21:2070–2081. doi: 10.1111/gcb.12793 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Persson H (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young scots pine stand in Central Sweden. Oikos 34:77–87. doi: 10.2307/3544552 CrossRefGoogle Scholar
  64. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  65. Rinn F (1998) TSAP V 3.5: computer program for tree-ring analysis and presentation. Frank Rinn Distribution, GermanyGoogle Scholar
  66. Schweingruber F (1978) Mikroskopische Holzanatomie. Anatomie microscopique du bois. Microscopic wood anatomy. Structural variability of stems and twigs in recent and subfossil woods from Central Europe. Zug, Switzerland.: Swiss Fed. Inst. For. Res., Birmensdorf. Edition ZurcherdoiGoogle Scholar
  67. Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. Mycorrhizal ecology. Springer, Berlin, pp 33–74Google Scholar
  68. Sloan VL, Fletcher BJ, Press MC, Williams M, Phoenix GK (2013) Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems. Glob Chang Biol 19:3668–3676. doi: 10.1111/gcb.12322 CrossRefPubMedGoogle Scholar
  69. Smith SE, Read DJ (1996) Mycorrhizal symbiosis. Cambridge Academic press, CambridgeGoogle Scholar
  70. Solly E, Schoning I, Boch S, Muller J, Socher S, Trumbore SE, Schrumpf M (2013) Mean age of carbon in fine roots from temperate forests and grasslands with different management. Biogeosciences 10:4833–4843CrossRefGoogle Scholar
  71. Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218CrossRefGoogle Scholar
  72. Solly E, Schöning I, Herold N, Trumbore S, Schrumpf M (2015) No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393:273–282. doi: 10.1007/s11104-015-2492-7 CrossRefGoogle Scholar
  73. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89:281–308. doi: 10.1016/j.rse.2003.10.018 CrossRefGoogle Scholar
  74. Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547CrossRefPubMedGoogle Scholar
  75. Tamminen P, Starr M (1994) Bulk density of forested mineral soils. Silva Fennica 28:53–60CrossRefGoogle Scholar
  76. Trubina MR (2006) Distribution of plants differing in attitude toward thermal conditions in communities of the timberline ecotone on Mount Iremel’, the Southern Urals. Russ J Ecol 37:306–315. doi: 10.1134/S1067413606050031 CrossRefGoogle Scholar
  77. Wallander H (2006) External mycorrhizal mycelia–the importance of quantification in natural ecosystems. New Phytol 171:240–242. doi: 10.1111/j.1469-8137.2006.01803.x CrossRefPubMedGoogle Scholar
  78. Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151(3):753–760CrossRefGoogle Scholar
  79. Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For Ecol Manag 262:999–1007. doi: 10.1016/j.foreco.2011.05.035 CrossRefGoogle Scholar
  80. Zhu Y-G, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci 8:407–409CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emily F. Solly
    • 1
    Email author
  • Ika Djukic
    • 1
  • Pavel A. Moiseev
    • 2
  • Nelly I. Andreyashkina
    • 2
  • Nadezhda M. Devi
    • 2
  • Hans Göransson
    • 3
  • Valeriy S. Mazepa
    • 2
  • Stepan G. Shiyatov
    • 2
  • Marina R. Trubina
    • 2
  • Fritz H. Schweingruber
    • 1
  • Martin Wilmking
    • 4
  • Frank Hagedorn
    • 1
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLZurichSwitzerland
  2. 2.Institute of Plant and Animal EcologyYekaterinburgRussia
  3. 3.Institute of Forest EcologyUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Institute for Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany

Personalised recommendations