Advertisement

Oecologia

, Volume 183, Issue 2, pp 545–553 | Cite as

Ocean acidification alters temperature and salinity preferences in larval fish

  • Jennifer C. A. Pistevos
  • Ivan Nagelkerken
  • Tullio Rossi
  • Sean D. Connell
Global change ecology – original research

Abstract

Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO2-treated fish showed no such response. Natural estuarine water—of higher temperature, lower salinity, and containing estuarine olfactory cues—was only preferred by fish treated under forecasted high CO2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO2 from human emissions.

Keywords

Animal behaviour Olfaction Mangrove Connectivity Estuary 

Notes

Acknowledgements

We thank Peter Frasier for his guidance and help in building the rearing tanks. This study was supported by an ARC Future Fellowship to I.N. (Grant No. FT120100183). S.D.C. was supported by Future Fellowship Grant No. FT0991953.

Author contribution statement

JCAP, TR and IN conceived and designed the experiments. JCAP and TR performed the experiments. JCAP analysed the data. JCAP, IN and SDC wrote the manuscript; other authors provided editorial advice.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Supplementary material

442_2016_3778_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Able KW (2005) A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuar Coast Shelf Sci 64:5–17CrossRefGoogle Scholar
  2. Allen LG, Yoklavich MM, Cailliet GM, Horn MH (2006) Bays and Estuaries. In: Pondella DJ II, Horn MH (eds) The ecology of marine fishes: California and adjacent waters Allen LG. University of California Press Ltd, London, pp 119–148Google Scholar
  3. Arvedlund M, Kavanagh K (2009) The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, Heidelberg, London, New YorkGoogle Scholar
  4. Balston J (2009) An analysis of the impacts of long-term climate variability on the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia. Fish Res 99:83–89. doi: 10.1016/j.fishres.2009.05.001 CrossRefGoogle Scholar
  5. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Change 2:38–41. doi: 10.1038/nclimate1291 CrossRefGoogle Scholar
  6. Bignami S, Sponaugle S, Cowen R (2013) Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Glob Change Biol 19:996–1006. doi: 10.1111/gcb.12133 CrossRefGoogle Scholar
  7. Bodznick D (1978) Calcium ion: an odorant for natural water discriminations and the migratory behavior of sockeye salmon. J Comp Physiol A 127:157–166CrossRefGoogle Scholar
  8. Briffa M, de la Haye K, Munday P (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528. doi: 10.1016/j.marpolbul.2012.05.032 CrossRefPubMedGoogle Scholar
  9. Caprio J, Shimohara M, Marui T, Harada S, Kiyohara S (2014) Marine teleost locates live prey through pH sensing. Science 344:1154–1156. doi: 10.1126/science.1252697 CrossRefPubMedGoogle Scholar
  10. Chivers D, McCormick M, Nilsson G, Munday P, Watson S-A, Meekan M, Mitchell M, Corkill K, Ferrari M (2014) Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob Change Biol 20:515–522. doi: 10.1111/gcb.12291 CrossRefGoogle Scholar
  11. Chung W-S, Marshall Watson S-A, Munday P, Nilsson G (2014) Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J Exp Biol 217:323–326. doi: 10.1242/jeb.092478 CrossRefPubMedGoogle Scholar
  12. Codling EA, Hill NA, Pitchford JW, Simpson SD (2004) Random walk models for the movement and recruitment of reef fish larvae. Mar Ecol Prog Ser 279:215–224CrossRefGoogle Scholar
  13. Cowen R (2002) Larval dispersal and retention and consequences for for population connectivity. In: Sale PF (ed) Coral reef fishes: dynamcs and diversity in a complex ecosystem. Academic Press, Elsevier, San Diego, California, pp 149–170CrossRefGoogle Scholar
  14. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527. doi: 10.1126/science.1122039 CrossRefPubMedGoogle Scholar
  15. Crawshaw LI, Podrabsky JE (2011) Temperature preference: behavioral responses to temperature in fishes. In: Anthony PF (ed.) Encyclopedia of fish physiology: from genome to environment, Elsevier, New York, pp 758–764Google Scholar
  16. Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap. doi: 10.1016/0198-0149(87)90021-5 Google Scholar
  17. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x CrossRefPubMedGoogle Scholar
  18. Dixson DL, Jennings AR, Atema J, Munday PL (2014) Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Change Biol 21:1454–1462. doi: 10.1111/gcb.12678 CrossRefGoogle Scholar
  19. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1(1):169–192CrossRefGoogle Scholar
  20. Edeline E, Lambert P, Rigaud C, Elie P (2006) Effects of body condition and water temperature on Anguilla anguilla glass eel migratory behavior. J Exp Mar Biol Ecol 331:217–225CrossRefGoogle Scholar
  21. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/ICESJMS/FSN048 CrossRefGoogle Scholar
  22. Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449CrossRefGoogle Scholar
  23. Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lönnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558. doi: 10.1111/j.1365-2435.2011.01951.x CrossRefGoogle Scholar
  24. Feyrer F, Cloern J, Brown L, Fish M, Hieb K, Baxter R (2015) Estuarine fish communities respond to climate variability over both river and ocean basins. Glob Change Biol 21:3608–3619. doi: 10.1111/gcb.12969 CrossRefGoogle Scholar
  25. Gerlach G, Atema J, Kingsford M, Black K, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci 104:858–863. doi: 10.1073/pnas.0606777104 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gillanders BM, Elsdon TS, Halliday IA, Jenkins GP, Robins JB, Valesini FJ (2011) Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Mar Freshw Res 62:1115–1131CrossRefGoogle Scholar
  27. Glencross B (2006) The nutritional management of barramundi, Lates calcarifer a review. Aquac Nutr 12:291–309. doi: 10.1111/j.1365-2095.2006.00410.x CrossRefGoogle Scholar
  28. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning. Proc R Soc B 281:20132509. doi: 10.1098/rspb.2013.2509 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212. doi: 10.1146/annurev.marine.010908.163708 CrossRefGoogle Scholar
  30. Hofmann G, Smith J, Johnson K, Send U, Levin L (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983. doi: 10.1371/journal.pone.0028983 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hubbard PC, Barata EN, Canario AV (2000) Olfactory sensitivity to changes in environmental [Ca (2 +)] in the marine teleost Sparus aurata. J Exp Biol 203:3821–3829PubMedGoogle Scholar
  32. Huijbers CM, Nagelkerken I, Lössbroek PA, Schulten IE, Siegenthaler A, Holderied MW, Simpson SD (2012) A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93:46–55. doi: 10.1890/10-2236.1 CrossRefPubMedGoogle Scholar
  33. Igulu MM, Nagelkerken I, van der Beek M, Schippers M, van Eck R, Mgaya YD (2013) Orientation from open water to settlement areas by reef fish: behavioral flexibility in the use of multiple reliable cues. Mar Ecol Prog Ser 493:243–257. doi: 10.3354/meps10542 CrossRefGoogle Scholar
  34. Katersky RS, Carter CG (2007) High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet. Aquaculture 272:444–450. doi: 10.1016/j.aquaculture.2007.09.001 CrossRefGoogle Scholar
  35. Keenan CP (1994) Recent evolution of population structure in Australian barramundi, Lates calcarifer (Bloch): an example of isolation by distance in one dimension. Aust J Mar Freshw Res 45:1123–1148CrossRefGoogle Scholar
  36. Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J (2002) Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci 70:309–340Google Scholar
  37. Kinlan B, Gaines S (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. doi: 10.1890/01-0622 CrossRefGoogle Scholar
  38. Kültz D (2012) Osmosensing. Fish Physiology: Eurihaline Fishes, vol 32. Elsevier, New York, pp 45–68Google Scholar
  39. Leduc A, Munday P, Brown G, Ferrari M (2013) Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philos Trans R Soc Lond B Biol Sci 368:20120447. doi: 10.1098/rstb.2012.0447 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leis JM (1991) The pelagic stage of reef fishes: the larval biology of coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 183–230CrossRefGoogle Scholar
  41. Leis J (2006) Are larvae of demersal fishes plankton or nekton? Adv Mar Biol 51:57–141CrossRefPubMedGoogle Scholar
  42. Leis JM, Siebeck U, Dixson DL (2011) How Nemo finds home: the neuroeclogy of dispersal and of population connectivity in larve of marine fishes. Intergrative Comp Biol 51:826–843. doi: 10.1093/icb/icr004 CrossRefGoogle Scholar
  43. Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi: 10.4319/lo.1973.18.6.0897 CrossRefGoogle Scholar
  44. Melzner F, Gutowska MA, Langenbuch M et al (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  45. Milton DA (2009) Living in two worlds: diadromous fishes, and factors affecting population connectivity between tropical rivers and coasts. In: Nagelkerken I (ed) ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, Heidelberg, London, New YorkGoogle Scholar
  46. Moore R (1982) Spawning and early life history of burramundi, Lates calcarifer (Bloch), in Papua New Guinea. Aust J Mar Freshw Res 33:647–661CrossRefGoogle Scholar
  47. Mukai Y, Chai LL, Shaleh S, Senoo S (2007) Structure and development of free neuromasts in barramundi, Lates calcarifer (Block). Zool Sci 24:829–835CrossRefPubMedGoogle Scholar
  48. Munday P, Dixson D, Donelson J, Jones G, Pratchett M, Devitsina G, Døving K (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci 106:1848–1852. doi: 10.1073/pnas.0809996106 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Munday P, Dixson D, McCormick M, Meekan M, Ferrari M, Chivers D (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934. doi: 10.1073/pnas.1004519107 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Myrberg, Fuiman L (2002) The sensory world of coral reef fishes. In: Coral reef fishes: dynamics and diversity in a complex ecosystem Academic, San Diego, p 123–148Google Scholar
  51. Nagelkerken I, Connell SD (2015) Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci USA 112:13272–13277. doi: 10.1073/pnas.1510856112 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Change Biol 22:974–989. doi: 10.1111/gcb.13167 CrossRefGoogle Scholar
  53. Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown EM, Hebert SC, Harris HW (2002) Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci 99:9231–9236. doi: 10.1073/pnas.152294399 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S-A, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. doi: 10.1038/nclimate1352 CrossRefGoogle Scholar
  55. Norin T, Malte H, Clark TD (2016) Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct Ecol 30:369–378. doi: 10.1111/1365-2435.12503 CrossRefGoogle Scholar
  56. Ong J, Rountrey A, Meeuwig J, Newman S, Zinke J, Meekan M (2015) Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change. Sci Rep 5:. doi: 10.1038/srep10859 Google Scholar
  57. Pender PJ, Griffin RK (1996) Habitat history of barramundi Lates calcarifer in a north Australian river system based on barium and strontium levels in scales. Trans Am Fish Soc 125:679–689. doi: 10.1577/1548-8659 CrossRefGoogle Scholar
  58. Pistevos JCA, Nagelkerken I, Rossi T, Olmos M, Connell SD (2015) Ocean acidification and global warming impair shark hunting behaviour and growth. Sci Rep 5:16293. doi: 10.1038/srep16293 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Réale D, Reader S, Sol D, McDougall P, Dingemanse N (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318. doi: 10.1111/j.1469-185X.2007.00010.x CrossRefPubMedGoogle Scholar
  60. Rossi T, Nagelkerken I, Simpson SD, Pistevos JC, Watson S-AA, Merillet L, Fraser P, Munday PL, Connell SD (2015) Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proc Biol Sci 282:20151954. doi: 10.1098/rspb.2015.1954 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Russell DJ, Rimmer MA, McDougall AJ, Kistle SE, Johnston WL (2004) Chapter 35 Stock Enhancement of Barramundi, Lates calcarifer (Bloch), in a Coastal River System in Northern Australia: Stocking Strategies, Survival and Benefit-cost. In: Leber KM, Kitada S, Blankenship HL, Svåsand Sand T (eds.) Stock enhancement and sea ranching: developments, pitfalls and opportunities, 2nd edn, Blackwell Publishing LtdGoogle Scholar
  62. Sabatés A (1990) Changes in the heterogeneity of mesoscale distribution patterns of larval fish associated with a shallow coastal haline front. Estuar Coast Shelf Sci 30:131–140CrossRefGoogle Scholar
  63. Sale PF (2004) Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol 44:390–399CrossRefPubMedGoogle Scholar
  64. Serrano X, Grosell M, Serafy J (2010) Salinity selection and preference of the grey snapper Lutjanus griseus: field and laboratory observations. J Fish Biol 76:. doi: 10.1111/j.1095-8649.2010.02585.x CrossRefPubMedGoogle Scholar
  65. Shaw E, Munday P, McNeil B (2013) The role of CO2 variability and exposure time for biological impacts of ocean acidification. Geophys Res Lett 40:4685–4688. doi: 10.1002/grl.50883 CrossRefGoogle Scholar
  66. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. doi: 10.1098/rsbl.2011.0293 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Smith NP (1983) A comparison of winter and summer temperature variations in a shallow bar-built estuary. Estuaries 6:2–9. doi: 10.2307/1351801 CrossRefGoogle Scholar
  68. Thresher RE, Colin PL, Bell LJ (1989) Planktonic duration, distribution and population structure of western and central Pacific damselfishes (Pomacentridae). Copeia 23:420–434CrossRefGoogle Scholar
  69. Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jennifer C. A. Pistevos
    • 1
  • Ivan Nagelkerken
    • 1
  • Tullio Rossi
    • 1
  • Sean D. Connell
    • 1
  1. 1.Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment InstituteThe University of AdelaideAdelaideAustralia

Personalised recommendations