, Volume 183, Issue 2, pp 531–543 | Cite as

The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

  • Matthew S. Hargrave
  • Andrew Foggo
  • Albert Pessarrodona
  • Dan A. SmaleEmail author
Global change ecology – original research


The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities.


Ocean warming Macroalgae Chemical defence Thermal tolerance Range shifts 



We thank Richard Billington for assistance with biochemical analyses and Esther Hughes (DASSH, MBA) for assistance with Fig. 1. D.A.S. was funded by the Natural Environmental Research Council (UK) Independent Research Fellowship (NE/K008439/1).

Author contribution statement

All authors conceived and designed the experiments. MH performed the experiments. MH and AF analysed the data. AP provided and analysed field-based survey data. MH and DS wrote the manuscript; AF and AP provided editorial advice.

Supplementary material

442_2016_3776_MOESM1_ESM.docx (431 kb)
Supplementary material 1 (DOCX 430 kb)


  1. Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159CrossRefGoogle Scholar
  2. Andersen GS, Pedersen MF, Nielsen SL (2013) Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J Phycol 49:689–700. doi: 10.1111/jpy.12077 CrossRefPubMedGoogle Scholar
  3. Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408. doi: 10.1034/j.1600-0706.2003.11680.x CrossRefGoogle Scholar
  4. Arnold M, Teagle H, Brown MP, Smale DA (2016) The structure of biogenic habitat and epibiotic assemblages associated with the global invasive kelp Undaria pinnatifida in comparison to native macroalgae. Biol Invasions 18:661–676CrossRefGoogle Scholar
  5. Bartsch I, Vogt J, Pehlke C, Hanelt D (2013) Prevailing sea-surface temperatures inhibit summer reproduction of the kelp Laminaria digitata at Helgoland (North Sea). J Phycol 49:1061–1073. doi: 10.1111/jpy.12125 CrossRefPubMedGoogle Scholar
  6. Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Sunday JM, Hill NA, Dulvy NK, Colwell RK, Holbrook NJ, Fulton EA, Slawinski D, Feng M, Edgar GJ, Radford BT, Thompson PA, Watson RA (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Change 26:27–38. doi: 10.1016/j.gloenvcha.2014.03.009 CrossRefGoogle Scholar
  7. Bearham D, Vanderklift MA, Gunson JR (2013) Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Mar Ecol Prog Ser 476:59–70. doi: 10.3354/meps10148 CrossRefGoogle Scholar
  8. Beaugrand G, McQuatters-Gollop A, Edwards M, Goberville E (2013) Long-term responses of North Atlantic calcifying plankton to climate change. Nat Clim Change 3:263–267.
  9. Beaumont NJ, Austen MC, Mangi SC, Townsend M (2008) Economic valuation for the conservation of marine biodiversity. Mar Poll Bull 56:386–396. doi: 10.1016/j.marpolbul.2007.11.013 CrossRefGoogle Scholar
  10. Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213. doi: 10.1016/j.pocean.2009.04.011 CrossRefGoogle Scholar
  11. Bertocci I, Araújo R, Oliveira P, Sousa-Pinto I (2015) Potential effects of kelp species on local fisheries. J Appl Ecol 52:1216–1226. doi: 10.1111/1365-2664.12483 CrossRefGoogle Scholar
  12. Bigger DS, Marvier MA (1998) How different would a world without herbivory be?: a search for generality in ecology. Integr Biol 1:60–67. doi: 10.1002/(SICI)1520-6602(1998)1:2<60:AID-INBI4>3.0.CO;2-Z CrossRefGoogle Scholar
  13. Biskup S, Bertocci I, Arenas F, Tuya F (2014) Functional responses of juvenile kelps, Laminaria ochroleuca and Saccorhiza polyschides, to increasing temperatures. Aquat Bot 113:117–122. doi: 10.1016/j.aquabot.2013.10.003 CrossRefGoogle Scholar
  14. Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94. doi: 10.1007/bf00397259 CrossRefGoogle Scholar
  15. Brodie J, Williamson CJ, Smale DA, Kamenos NA, Mieszkowska N, Santos R, Cunliffe M, Steinke M, Yesson C, Anderson KM, Asnaghi V, Brownlee C, Burdett HL, Burrows MT, Collins S, Donohue PJC, Harvey B, Foggo A, Noisette F, Nunes J, Ragazzola F, Raven JA, Schmidt DN, Suggett D, Teichberg M, Hall-Spencer JM (2014) The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol 4:2787–2798. doi: 10.1002/ece3.1105 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cruces E, Huovinen P, Gómez I (2012) Phlorotannin and antioxidant responses upon short-term exposure to UV radiation and elevated temperature in three South Pacific kelps. Photochem Photobiol 88:58–66. doi: 10.1111/j.1751-1097.2011.01013.x CrossRefPubMedGoogle Scholar
  17. De Wreede RE, Klinger T (1988) Reproductive strategies in algae. In: Douest JL, Douest LL (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, Melbourne, pp 267–284Google Scholar
  18. Desmond MJ, Pritchard DW, Hepburn CD (2015) Light limitation within southern New Zealand kelp forest communities. PLoS One 10:e0123676. doi: 10.1371/journal.pone.0123676 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gorman D, Bajjouk T, Populus J, Vasquez M, Ehrhold A (2013) Modeling kelp forest distribution and biomass along temperate rocky coastlines. Mar Biol 160:309–325. doi: 10.1007/s00227-012-2089-0 CrossRefGoogle Scholar
  20. Gutow L, Petersen I, Bartl K, Huenerlage K (2016) Marine meso-herbivore consumption scales faster with temperature than seaweed primary production. J Exp Mar Biol Ecol 477:80–85. doi: 10.1016/j.jembe.2016.01.009 CrossRefGoogle Scholar
  21. Hay ME, Kappel QE, Fenical W (1994) Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726. doi: 10.2307/1939631 CrossRefGoogle Scholar
  22. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  23. Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver EC, Benthuysen J, Burrows MT, Donat MG, Feng M, Holbrook NJ, Moore PJ, Scannell HA, Sen Gupta A, Wernberg T (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238CrossRefGoogle Scholar
  24. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi: 10.1126/science.1189930 CrossRefPubMedGoogle Scholar
  25. Hughes SL, Holliday NP, Kennedy J, Berry DI, Kent EC, Sherwin T, Dye S, Inall M, Shammon T, Smyth T (2010) Temperature (air and sea). MCCIP Annual Report Card 2010–2011, MCCIP Science Review, pp 16Google Scholar
  26. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 1535Google Scholar
  27. Izquierdo J, Pérez-Ruzafa I, Gallardo T (2002) Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgol Mar Res 55:285–292. doi: 10.1007/s10152-001-0087-6 CrossRefGoogle Scholar
  28. Johnson CR, Mann KH (1986) The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. J Exp Mar Biol Ecol 97:231–267. doi: 10.1016/0022-0981(86)90244-3 CrossRefGoogle Scholar
  29. Kain JM, Svendsen P (1969) A note on the behaviour of Patina pellucida in Britain and Norway. Sarsia 38:25–30. doi: 10.1080/00364827.1969.10411147 CrossRefGoogle Scholar
  30. Kimbro DL, Cheng BS, Grosholz ED (2013) Biotic resistance in marine environments. Ecol Lett 16:821–833. doi: 10.1111/ele.12106 CrossRefPubMedGoogle Scholar
  31. Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226CrossRefGoogle Scholar
  32. Krumhansl KA, Scheibling RE (2011) Spatial and temporal variation in grazing damage by the gastropod Lacuna vincta in Nova Scotian kelp beds. Aquat Biol 13:163–173. doi: 10.3354/ab00366 CrossRefGoogle Scholar
  33. Krumhansl KA, Lauzon-Guay J-S, Scheibling RE (2014) Modeling effects of climate change and phase shifts on detrital production of a kelp bed. Ecology 95:763–774. doi: 10.1890/13-0228.1 CrossRefPubMedGoogle Scholar
  34. Ladah L, Zertuche-González J (2007) Survival of microscopic stages of a perennial kelp (Macrocystis pyrifera) from the center and the southern extreme of its range in the Northern Hemisphere after exposure to simulated El Niño stress. Mar Biol 152:677–686. doi: 10.1007/s00227-007-0723-z CrossRefGoogle Scholar
  35. Lima FP, Wethey DS (2012) Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun. 3:704. doi: 10.1038/ncomms1713 CrossRefPubMedGoogle Scholar
  36. Ling SD (2008) Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156:883–894CrossRefPubMedGoogle Scholar
  37. Lüning K (1979) Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar Ecol Prog Ser 1:195–207CrossRefGoogle Scholar
  38. Lüning K (1984) Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland (North Sea) as an example. Helgoländer Meeresun 38:305–317. doi: 10.1007/bf01997486 CrossRefGoogle Scholar
  39. Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin Heidelberg, pp 1–24CrossRefGoogle Scholar
  40. Moore P, Hawkins SJ, Thompson RC (2007) Role of biological habitat amelioration in altering the relative responses of congeneric species to climate change. Mar Ecol Prog Ser 334:11–19CrossRefGoogle Scholar
  41. Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of ocean warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638Google Scholar
  42. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998CrossRefPubMedGoogle Scholar
  43. Norderhaug KM, Christie HC (2009) Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar Biol Res 5:515–528. doi: 10.1080/17451000902932985 CrossRefGoogle Scholar
  44. O’Brien JM, Scheibling RE (2016) Nipped in the bud: mesograzer feeding preference contributes to kelp decline. Ecology 97:1873–1886. doi: 10.1890/15-1728.1 CrossRefPubMedGoogle Scholar
  45. O’Connor MI (2009) Warming strengthens an herbivore–plant interaction. Ecology 90:388–398CrossRefPubMedGoogle Scholar
  46. Pansch C, Gómez I, Rothäusler E, Veliz K, Thiel M (2008) Species-specific defense strategies of vegetative versus reproductive blades of the Pacific kelps Lessonia nigrescens and Macrocystis integrifolia. Mar Biol 155:51-62. doi: 10.1007/s00227-008-1006-z CrossRefGoogle Scholar
  47. Parke M (1948) Laminaria ochroleuca de la Pylaie growing on the coast of Britain. Nature 162:295–296CrossRefPubMedGoogle Scholar
  48. Parker JD, Hay ME (2005) Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecol Lett 8:959–967. doi: 10.1111/j.1461-0248.2005.00799.x CrossRefGoogle Scholar
  49. Pereira TR, Engelen AH, Pearson GA, Serrao EA, Destombe C, Valero M (2011) Temperature effects on the microscopic haploid stage development of Laminaria ochroleuca and Sacchoriza polyschides, kelps with contrasting life histories. Cah Biol Mar 52:1–10Google Scholar
  50. Pereira TR, Engelen AH, Pearson GA, Valero M, Serrão EA (2015) Response of kelps from different latitudes to consecutive heat shock. J Exp Mar Biol Ecol 463:57–62. doi: 10.1016/j.jembe.2014.10.022 CrossRefGoogle Scholar
  51. Philippart CJM, Anadon R, Danovaro R, Dippner JW, Drinkwater KF, Hawkins SJ, Oguz T, O’Sullivan G, Reid PC (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J Exp Mar Biol Ecol 400:52–69CrossRefGoogle Scholar
  52. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA (2013) Marine taxa track local climate velocities. Science 341:1239–1242. doi: 10.1126/science.1239352 CrossRefPubMedGoogle Scholar
  53. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925. doi:  10.1038/nclimate1958. CrossRefGoogle Scholar
  54. Raybaud V, Beaugrand G, Goberville E, Delebecq G, Destombe C, Valero M, Davoult D, Morin P, Gevaert F (2013) Decline in kelp in west Europe and climate. PLoS One 8:e66044. doi: 10.1371/journal.pone.0066044 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rivero RM, Ruiz JM, Garcı́a PC, López-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321. doi: 10.1016/S0168-9452(00)00395-2 CrossRefPubMedGoogle Scholar
  56. Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photochem Photobiol Sci 8:1302–1312. doi: 10.1039/B901098J CrossRefPubMedGoogle Scholar
  57. Scheibling RE, Hennigar AW, Balch T (1999) Destructive grazing, epiphytism, and disease: the dynamics of sea urchin–kelp interactions in Nova Scotia. Can J Fish Aquat Sci 56:2300–2314. doi: 10.1139/f99-163 CrossRefGoogle Scholar
  58. Simonson EJ, Metaxas A, Scheibling RE (2015) Kelp in hot water: II. Effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Mar Ecol Prog Ser 537:105–119. doi: 10.3354/meps11421 CrossRefGoogle Scholar
  59. Smale DA, Vance T (2015) Climate-driven shifts in species distributions may exacerbate the impacts of storm disturbances on northeast Atlantic kelp forests. Mar Freshwater Res 67:65–74CrossRefGoogle Scholar
  60. Smale DA, Wernberg T (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc B. 280:20122829. doi: 10.1098/rspb.2012.2829 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Smale DA, Moore PJ (2017) Variability in kelp forest structure along a latitudinal gradient in ocean temperature. J Exp Mar Biol Ecol 486:255–264Google Scholar
  62. Smale DA, Wernberg T, Yunnie ALE, Vance T (2015) The rise of Laminaria ochroleuca in the Western English Channel (UK) and preliminary comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar Ecol 36:1033–1044CrossRefGoogle Scholar
  63. Smale DA, Burrows MT, Evans AJ, King N, Sayer MDJ, Yunnie ALE, Moore PJ (2016) Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within kelp forests in the United Kingdom. Mar Ecol Prog Ser 542:79–95CrossRefGoogle Scholar
  64. Smyth TJ, Fishwick JR, Al-Moosawi L, Cummings DG, Harris C, Kitidis V, Rees A, Martinez-Vicente V, Woodward EMS (2010) A broad spatio-temporal view of the Western English Channel observatory. J Plankton Res 32:585–601. doi: 10.1093/plankt/fbp128 CrossRefGoogle Scholar
  65. Steinberg PD (1995) Seasonal variation in the relationship between growth rate and phlorotannin production in the kelp Ecklonia radiata. Oecologia 102:169–173. doi: 10.1007/bf00333248 CrossRefGoogle Scholar
  66. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459CrossRefGoogle Scholar
  67. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686–690. doi: 10.1038/nclimate1539 CrossRefGoogle Scholar
  68. Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill NA, Holbrook NJ, Edgar GJ, Stuart-Smith RD, Barrett NS, Wernberg T, Watson RA, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Bates AE (2015) Species traits and climate velocity explain geographic range shifts in an ocean warming hotspot. Ecol Lett 18:944–953CrossRefPubMedGoogle Scholar
  69. Tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163. doi: 10.2216/i0031-8884-31-2-147.1 CrossRefGoogle Scholar
  70. Toth GB, Pavia H (2002) Intraplant habitat and feeding preference of two gastropod herbivores inhabiting the kelp Laminaria hyperborea. J Mar Biol Assoc UK 82:243–247. doi: 10.1017/S0025315402005416 CrossRefGoogle Scholar
  71. Tuya F, Cacabelos E, Duarte P, Jacinto D, Castro JJ, Silva T, Bertocci I, Franco JN, Arenas F, Coca J, Wernberg T (2012) Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate. Mar Ecol Prog Ser 466:9–19CrossRefGoogle Scholar
  72. Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364. doi: 10.1111/ele.12348 CrossRefPubMedGoogle Scholar
  73. Van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–663. doi: 10.2307/1941014 CrossRefGoogle Scholar
  74. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil Trans R Soc B Biol Sci 365:2025–2034. doi: 10.1098/rstb.2010.0037 CrossRefGoogle Scholar
  75. Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846. doi: 10.1098/rspb.2014.0846 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang Y, Yu Q, Tang X, Wang L (2009) Calcium pretreatment increases thermotolerance of Laminaria japonica sporophytes. Prog Nat Sci 19:435–442. doi: 10.1016/j.pnsc.2008.07.016 CrossRefGoogle Scholar
  77. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82. doi: 10.1038/nclimate1627 CrossRefGoogle Scholar
  78. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson SK (2016) Climate driven regime shift of a temperate marine ecosystem. Science 353:169–172CrossRefPubMedGoogle Scholar
  79. Yesson C, Bush LE, Davies AJ, Maggs CA, Brodie J (2015) The distribution and environmental requirements of large brown seaweeds in the British Isles. J Mar Biol Assoc UK 95:669–680. doi: 10.1017/S0025315414001453 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Matthew S. Hargrave
    • 1
    • 2
  • Andrew Foggo
    • 1
  • Albert Pessarrodona
    • 2
  • Dan A. Smale
    • 2
    Email author
  1. 1.Marine Biology and Ecology Research CentrePlymouth UniversityPlymouthUK
  2. 2.Marine Biological Association of the United Kingdom, The LaboratoryPlymouthUK

Personalised recommendations