Advertisement

Oecologia

, Volume 183, Issue 2, pp 455–467 | Cite as

Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment

  • Jiayong Zhang
  • Helge Bruelheide
  • Xufei Chen
  • David Eichenberg
  • Wenzel Kröber
  • Xuwen Xu
  • Liting Xu
  • Andreas Schuldt
Plant-microbe-animal interactions - original research

Abstract

Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.

Keywords

Biodiversity and ecosystem function Host specialization Plant species richness Sustainable forest management Trophic interactions 

Notes

Acknowledgements

We thank the BEF-China consortium for support; Weibin Zhu, Chaodong Zhu, Zhisheng Zhang, Bo Yang, and Weiwei Zhang for help with arthropod sampling and identification; and two anonymous reviewers and the Editor for constructive comments. Ying Li, Goddert von Oheimb, and Werner Härdtle kindly provided tree height data. We gratefully acknowledge funding by the German Research Foundation (DFG FOR 891/1 and 891/2), the Sino-German Centre for Research Promotion in Beijing (GZ 524, 592, 698, 699, 785, 970 and 1020), and the National Natural Science Foundation of China (No. 31370042).

Author contribution statement

JZ and AS designed the study. JZ, XC, XX, LX, HB, DE, and WK collected and prepared the data. AS analyzed the data. AS and JZ wrote the manuscript, with input from all coauthors.

Supplementary material

442_2016_3769_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1553 kb)

References

  1. Abdala-Roberts L, Mooney KA, Quijano-Medina T, Campos-Navarrete MJ, González-Moreno A, Parra-Tabla V (2015) Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos 124:1527–1535CrossRefGoogle Scholar
  2. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88CrossRefPubMedGoogle Scholar
  3. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  4. Bernays EA, Bright KL, Gonzalez N, Angel J (1994) Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75:1997–2006CrossRefGoogle Scholar
  5. Boege K, Barton KE, Dirzo R (2011) Influence of tree ontogeny on plant–herbivore interactions. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size-and age-related changes in tree structure and function. Springer, Dordrecht, pp 193–214CrossRefGoogle Scholar
  6. Brown VK (1985) Insect herbivores and plant succession. Oikos 44:17–22CrossRefGoogle Scholar
  7. Bruelheide H et al (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89CrossRefGoogle Scholar
  8. Campos RI, Vasconcelos HL, Ribeiro SP, Neves FS, Soares JP (2006) Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29:442–450CrossRefGoogle Scholar
  9. Castagneyrol B, Jactel H (2012) Unraveling plant–animal diversity relationships: a meta-regression analysis. Ecology 93:2115–2124CrossRefPubMedGoogle Scholar
  10. Castagneyrol B, Jactel H, Vacher C, Brockerhoff EG (2014) Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol 51:134–141CrossRefGoogle Scholar
  11. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335CrossRefGoogle Scholar
  12. Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24CrossRefGoogle Scholar
  13. Eichenberg D, Purschke O, Ristok C, Wessjohann L, Bruelheide H (2015) Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J Ecol 103:1667–1679CrossRefGoogle Scholar
  14. Forister ML et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci USA 112:442–447CrossRefPubMedGoogle Scholar
  15. Garnier E et al (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  16. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039CrossRefPubMedGoogle Scholar
  17. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848CrossRefPubMedGoogle Scholar
  19. Janssen A, Sabelis MW, Magalhães S, Montserrat M, Van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719CrossRefPubMedGoogle Scholar
  20. Jocqué R, Dippenaar-Schoeman AS (2007) Spider families of the world. Royal Museum for Central Africa, TervurenGoogle Scholar
  21. Josephrajkumar A, Rajan P, Mohan C, Thomas RJ (2011) First record of Asian grey weevil (Myllocerus undatus) on coconut from Kerala, India. Phytoparasitica 39:63–65CrossRefGoogle Scholar
  22. Karban R, Karban C, Huntzinger M, Pearse I, Crutsinger G (2010) Diet mixing enhances the performance of a generalist caterpillar, Platyprepia virginalis. Ecol Entomol 35:92–99CrossRefGoogle Scholar
  23. Kröber W, Zhang S, Ehmig M, Bruelheide H (2014) Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS One 9:e109211CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lefcheck JS, Whalen MA, Davenport TM, Stone JP, Duffy JE (2013) Physiological effects of diet mixing on consumer fitness: a meta-analysis. Ecology 94:565–572CrossRefPubMedGoogle Scholar
  25. Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592CrossRefGoogle Scholar
  26. Li Y, Härdtle W, Bruelheide H, Nadrowski K, Scholten T, von Wehrden H, von Oheimb G (2014) Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). Forest Ecol Manag 327:118–127CrossRefGoogle Scholar
  27. Meyfroidt P, Rudel TK, Lambin EF (2010) Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci USA 107:20917–20922CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA (2016) Plant diversity effects on insect herbivores and their natural enemies: current thinking, recent findings, and future directions. Curr Opin Insect Sci 14:1–7CrossRefPubMedGoogle Scholar
  29. Muiruri EW, Rainio K, Koricheva J (2016) Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae. Oecologia 180:619–630CrossRefPubMedGoogle Scholar
  30. Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem functioning and service? Curr Opin Environ Sus 2:75–79CrossRefGoogle Scholar
  31. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  32. Novotny V et al (2010) Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203CrossRefPubMedGoogle Scholar
  33. Pellissier L, Ndiribe C, Dubuis A, Pradervand J-N, Salamin N, Guisan A, Rasmann S (2013) Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecol Lett 16:600–608CrossRefPubMedGoogle Scholar
  34. Perez-Harguindeguy N, Diaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–650CrossRefGoogle Scholar
  35. Pérez-Harguindeguy N et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234CrossRefGoogle Scholar
  36. Pfisterer AB, Diemer M, Schmid B (2003) Dietary shift and lowered biomass gain of a generalist herbivore in species-poor experimental plant communities. Oecologia 135:234–241CrossRefPubMedGoogle Scholar
  37. Plath M, Dorn S, Riedel J, Barrios H, Mody K (2012) Associational resistance and associational susceptibility: specialist herbivores show contrasting responses to tree stand diversification. Oecologia 169:477–487CrossRefPubMedGoogle Scholar
  38. Poorter L et al (2015) Diversity enhances carbon storage in tropical forests. Global Ecol Biogeogr 24:1314–1328CrossRefGoogle Scholar
  39. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. University Press, CambridgeCrossRefGoogle Scholar
  40. Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43CrossRefGoogle Scholar
  41. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124CrossRefGoogle Scholar
  42. Scherber C et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556CrossRefPubMedGoogle Scholar
  43. Scherer-Lorenzen M (2014) The functional role of biodiversity in the context of global change. In: Burslem D, Coomes D, Simonson W (eds) Forests and global change. Cambridge University Press, Cambridge, pp 195–238CrossRefGoogle Scholar
  44. Schowalter TD (2012) Insect herbivore effects on forest ecosystem services. J Sustain For 31:518–536CrossRefGoogle Scholar
  45. Schuldt A, Scherer-Lorenzen M (2014) Non-native tree species (Pseudotsuga menziesii) strongly decreases predator biomass and abundance in mixed-species plantations of a tree diversity experiment. Forest Ecol Manag 327:10–17CrossRefGoogle Scholar
  46. Schuldt A, Staab M (2015) Tree species richness strengthens relationships between ants and the functional composition of spider assemblages in a highly diverse forest. Biotropica 47:339–346CrossRefGoogle Scholar
  47. Schuldt A et al (2010) Tree diversity promotes insect herbivory in subtropical forests of south-east China. J Ecol 98:917–926CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schuldt A, Both S, Bruelheide H, Härdtle W, Schmid B, Zhou H, Assmann T (2011) Predator diversity and abundance provide little support for the enemies hypothesis in forests of high tree diversity. PLoS One 6:e22905CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schuldt A, Assmann T, Bruelheide H, Durka W, Eichenberg D, Härdtle W, Kröber W, Michalski SG, Purschke O (2014a) Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol 202:864–873CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schuldt A, Baruffol M, Bruelheide H, Chen S, Chi X, Wall M, Assmann T (2014b) Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests. Oecologia 176:171–182CrossRefPubMedGoogle Scholar
  51. Schuldt A, Bruelheide H, Härdtle W, Assmann T, Li Y, Ma K, von Oheimb G, Zhang J (2015a) Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth. J Ecol 103:563–571CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schuldt A et al (2015b) Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nat Commun 6:10169. doi: 10.11038/ncomms10169 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810CrossRefGoogle Scholar
  54. Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T (2009a) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia 160:279–288CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T (2009b) Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Distrib 15:660–670CrossRefGoogle Scholar
  56. Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529PubMedGoogle Scholar
  57. Staab M, Schuldt A, Assmann T, Klein AM (2014) Tree diversity promotes predator but not omnivore ants in a subtropical Chinese forest. Ecol Entomol 39:637–647CrossRefGoogle Scholar
  58. Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell, OxfordGoogle Scholar
  59. Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314CrossRefPubMedGoogle Scholar
  60. Vehviläinen H, Koricheva J, Ruohomaki K (2007) Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia 152:287–298CrossRefPubMedGoogle Scholar
  61. Vehviläinen H, Koricheva J, Ruohomaki K (2008) Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117:935–943CrossRefGoogle Scholar
  62. Verheyen K et al (2016) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41CrossRefPubMedGoogle Scholar
  63. Yang X et al (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J Forest Res 132:593–606CrossRefGoogle Scholar
  64. Zhang YA, Adams J (2011) Top-down control of herbivores varies with ecosystem types. J Ecol 99:370–372Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiayong Zhang
    • 1
  • Helge Bruelheide
    • 2
    • 3
  • Xufei Chen
    • 1
  • David Eichenberg
    • 2
  • Wenzel Kröber
    • 2
  • Xuwen Xu
    • 1
  • Liting Xu
    • 1
  • Andreas Schuldt
    • 2
    • 3
    • 4
  1. 1.Institute of EcologyZhejiang Normal UniversityJinhuaChina
  2. 2.Institute of Biology/Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalleGermany
  3. 3.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  4. 4.Institute of EcologyLeuphana University LüneburgLüneburgGermany

Personalised recommendations