Advertisement

Oecologia

, Volume 183, Issue 1, pp 211–220 | Cite as

Competition overwhelms the positive plant–soil feedback generated by an invasive plant

  • Kerri M. Crawford
  • Tiffany M. Knight
Community ecology – original research

Abstract

Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant–soil feedbacks. We tested how community context altered plant–soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant–soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant–soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant–soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.

Keywords

Lespedeza cuneata Prairie Invasion Soil microbes Plant–soil feedback 

Notes

Acknowledgements

Thanks to Brennan Keiser for laboratory assistance. KMC was supported by a Tyson Postdoctoral Fellowship from Tyson Research Center and a Postdoctoral Research Fellowship in Biology from the National Science Foundation (#1103667). TMK was supported by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship of TM Knight. We would also like to thank Editor Gehring, Luke Flory, and 3 anonymous for providing comments that greatly improved this manuscript.

Author contribution statement

KMC and TMK conceived and designed the experiments. KMC performed the experiments and analyzed the data. KMC and TMK wrote the manuscript.

Supplementary material

442_2016_3759_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619. doi: 10.1007/s00442-004-1679-z CrossRefPubMedGoogle Scholar
  2. Anacker BL, Klironomos JN, Maherali H et al (2014) Phylogenetic conservatism in plant–soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621. doi: 10.1111/ele.12378 CrossRefPubMedGoogle Scholar
  3. Bennett AE, Thomsen M, Strauss SY (2011) Multiple mechanisms enable invasive species to suppress native species. Am J Bot 98:1086–1094. doi: 10.3732/ajb.1000177 CrossRefPubMedGoogle Scholar
  4. Bever JD (1994) Feeback between plants and their soil communities in an old field community. Ecology 75:1965. doi: 10.2307/1941601 CrossRefGoogle Scholar
  5. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561. doi: 10.2307/2960528 CrossRefGoogle Scholar
  6. Bever JD, Dickie IA, Facelli E et al (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi: 10.1016/j.tree.2010.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brandon AL, Gibson DJ, Middleton BA (2004) Mechanisms for dominance in an early successional old field by the invasive non-native Lespedeza cuneata (Dum. Cours.) G Don. Biol Invasions 6:483–493. doi: 10.1023/B:BINV.0000041561.71407.f5 CrossRefGoogle Scholar
  8. Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci USA 108:5302–5307. doi: 10.1073/pnas.1013003108 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Callaway RM, Thelen GC, Barth S et al (2004) Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85:1062–1071. doi: 10.1890/02-0775 CrossRefGoogle Scholar
  10. Casper BB, Castelli JP (2007) Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecol Lett 10:394–400. doi: 10.1111/j.1461-0248.2007.01030.x CrossRefPubMedGoogle Scholar
  11. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. doi: 10.1111/j.1461-0248.2009.01314.x CrossRefPubMedGoogle Scholar
  12. Coykendall KE, Houseman GR (2013) Lespedeza cuneata invasion alters soils facilitating its own growth. Biol Invasions 16:1735–1742. doi: 10.1007/s10530-013-0623-8 CrossRefGoogle Scholar
  13. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. doi: 10.1146/annurev.ecolsys.34.011802.132403 CrossRefGoogle Scholar
  14. Eddy TA, Moore CM (1998) Effects of Sericea Lespedeza (Lespedeza cuneata (Dunmont) G. Don) invasion on oak savannas in Kansas. Trans Wisconsin Acad Sci Arts Lett 86:57–62Google Scholar
  15. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi: 10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  16. Eppinga MB, Rietkerk M, Dekker SC et al (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114:168–176. doi: 10.1111/j.2006.0030-1299.14625.x CrossRefGoogle Scholar
  17. Eviner VT, Hawkes CV (2008) Embracing variability in the application of plant–soil interactions to the restoration of communities and ecosystems. Restor Ecol 16:713–729. doi: 10.1111/j.1526-100X.2008.00482.x CrossRefGoogle Scholar
  18. Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412. doi: 10.1890/08-0485.1 CrossRefPubMedGoogle Scholar
  19. Firn J, MacDougall AS, Schmidt SM, Buckley YM (2010) Early emergence and resource availability can competitively favour natives over a functionally-similar invader. Oecologia 163:775–784CrossRefPubMedGoogle Scholar
  20. Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501. doi: 10.3389/fpls.2014.00501 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Guernsey WJ (1977) Sericea Lespedeza (Lespedeza cuneata): Its use and management. U.S. Department of Agriculture Farmers Bulletin No. 2245Google Scholar
  22. He W-M, Cui Q-G (2009) Manipulation of soil biota in ecological research. In: Web Ecol. http://www.web-ecol.net/9/68/2009/we-9-68-2009.pdf. Accessed 12 Nov 2014
  23. Jordan NR, Larson DL, Huerd SC (2011) Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species. Invasive Plant Sci Manag 4:11–21. doi: 10.1614/IPSM-D-10-00004.1 CrossRefGoogle Scholar
  24. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi: 10.1038/417067a CrossRefPubMedGoogle Scholar
  25. Kulmatiski A, Beard KH (2011) Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol Biochem 43:823–830. doi: 10.1016/j.soilbio.2010.12.018 CrossRefGoogle Scholar
  26. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992. doi: 10.1111/j.1461-0248.2008.01209.x CrossRefPubMedGoogle Scholar
  27. Lee MR, Flory SL, Phillips RP (2012) Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170:457–465. doi: 10.1007/s00442-012-2309-9 CrossRefPubMedGoogle Scholar
  28. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world's worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group (ISSG), International Union for Conservation of Nature (IUCN), AucklandGoogle Scholar
  29. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320CrossRefGoogle Scholar
  30. Mangan SA, Schnitzer SA, Herre EA et al (2010) Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755. doi: 10.1038/nature09273 CrossRefPubMedGoogle Scholar
  31. Meisner A, Gera Hol WH, de Boer W et al (2014) Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis. Biol Invasions 16:2551–2561. doi: 10.1007/s10530-014-0685-2 CrossRefGoogle Scholar
  32. Miller JH (2006) Nonnative invasive plants of southern forests: a field guide for identification and control. USDA Forest Service, Southern Research Station, Ashville, NCGoogle Scholar
  33. Nijjer S, Rogers WE, Siemann E (2007) Negative plant–soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens. Proc Biol Sci 274:2621–2627. doi: 10.1098/rspb.2007.0804 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Perkins LB, Nowak RS (2012) Soil conditioning and plant–soil feedbacks affect competitive relationships between native and invasive grasses. Plant Ecol 213:1337–1344. doi: 10.1007/s11258-012-0092-7 CrossRefGoogle Scholar
  35. Powell KI, Chase JM, Knight TM (2013) Invasive plants have scale-dependent effects on diversity by altering species-area relationships. Science 339:316–318CrossRefPubMedGoogle Scholar
  36. Powlson DS, Jenkinson DS (1976) The effects of biocidal treatments on metabolism in soil—II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biol Biochem 8:179–188. doi: 10.1016/0038-0717(76)90002-X CrossRefGoogle Scholar
  37. Pringle A, Bever JD, Gardes M et al (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715. doi: 10.1146/annurev.ecolsys.39.110707.173454 CrossRefGoogle Scholar
  38. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457. doi: 10.1111/j.1469-8137.2006.01715.x CrossRefPubMedGoogle Scholar
  39. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291. doi: 10.1890/02-0298 CrossRefGoogle Scholar
  40. Rodríguez-Echeverría S, Afonso C, Correia M et al (2013) The effect of soil legacy on competition and invasion by Acacia dealbata Link. Plant Ecol 214:1139–1146. doi: 10.1007/s11258-013-0238-2 CrossRefGoogle Scholar
  41. Shannon S, Flory SL, Reynolds H (2012) Competitive context alters plant–soil feedback in an experimental woodland community. Oecologia 169:235–243. doi: 10.1007/s00442-011-2195-6 CrossRefPubMedGoogle Scholar
  42. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New YorkGoogle Scholar
  43. Smith LM, Reynolds HL (2015) Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96:2523–2532. doi: 10.1890/14-2150.1 CrossRefPubMedGoogle Scholar
  44. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465–487CrossRefGoogle Scholar
  45. Suding, KN, Gross KL, Houseman G (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19: 46–53CrossRefPubMedGoogle Scholar
  46. Suding KN, Stanley Harpole W, Fukami T et al (2013) Consequences of plant–soil feedbacks in invasion. J Ecol 101:298–308. doi: 10.1111/1365-2745.12057 CrossRefGoogle Scholar
  47. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216. doi: 10.1016/j.tree.2006.01.006 CrossRefPubMedGoogle Scholar
  48. van der Putten WH, Klironomos JN, Wardle DA (2007a) Microbial ecology of biological invasions. ISME J 1:28–37. doi: 10.1038/ismej.2007.9 CrossRefPubMedGoogle Scholar
  49. van der Putten WH, Kowalchuk GA, Brinkman EP et al (2007b) Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology 88:978–988. doi: 10.1890/06-1051 CrossRefPubMedGoogle Scholar
  50. van der Putten WH, Bardgett RD, Bever JD et al (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi: 10.1111/1365-2745.12054 CrossRefGoogle Scholar
  51. Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi: 10.1111/j.1461-0248.2011.01628.x CrossRefPubMedGoogle Scholar
  52. Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399–407. doi: 10.1890/07-2144.1 CrossRefPubMedGoogle Scholar
  53. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, PrincetonGoogle Scholar
  54. Weaver JE, Fitzpatrick TJ (1934) The prairie. Ecol Monogr 4:109–295CrossRefGoogle Scholar
  55. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477. doi:10.1641/0006-3568(2005)055[0477:BNGSCA]2.0.CO;2CrossRefGoogle Scholar
  56. Yannarell AC, Busby RR, Denight ML et al (2011) Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata. Front Microbiol 2:127. doi: 10.3389/fmicb.2011.00127 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yelenik SG, D’Antonio CM (2013) Self-reinforcing impacts of plant invasions change over time. Nature 503:517–520. doi: 10.1038/nature12798 CrossRefPubMedGoogle Scholar
  58. Yelenik SG, Levine JM (2011) The role of plant–soil feedbacks in driving native-species recovery. Ecology 92:66–74. doi: 10.1890/10-0465.1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BiologyWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Biology and BiochemistryUniversity of HoustonHoustonUSA
  3. 3.Institute of BiologyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  4. 4.Department of Community EcologyHelmholtz Centre for Environmental Research-UFZHalle (Saale)Germany
  5. 5.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations