, Volume 182, Issue 4, pp 995–1005 | Cite as

Foraging strategies of a generalist marine predator inhabiting a dynamic environment

  • E. A. McHuron
  • P. W. Robinson
  • S. E. Simmons
  • C. E. Kuhn
  • M. Fowler
  • D. P. Costa
Behavioral ecology – original research


Intraspecific variability is increasingly recognized as an important component of foraging behavior that can have implications for both population and community dynamics. We used an individual-level approach to describe the foraging behavior of an abundant, generalist predator that inhabits a dynamic marine ecosystem, focusing specifically on the different foraging strategies used by individuals in the same demographic group. We collected data on movements and diving behavior of adult female California sea lions (Zalophus californianus) across multiple foraging trips to sea. Sea lions (n = 35) used one of three foraging strategies that primarily differed in their oceanic zone and dive depth: a shallow, epipelagic strategy, a mixed epipelagic/benthic strategy, and a deep-diving strategy. Individuals varied in their degree of fidelity to a given strategy, with 66 % of sea lions using only one strategy on all or most of their foraging trips across the two-month tracking period. All foraging strategies were present in each of the sampling years, but there were inter-annual differences in the population-level importance of each strategy that may reflect changes in prey availability. Deep-diving sea lions traveled shorter distances and spent a greater proportion of time at the rookery than sea lions using the other two strategies, which may have energetic and reproductive implications. These results highlight the importance of an individual-based approach in describing the foraging behavior of female California sea lions and understanding how they respond to the seasonal and annual changes in prey availability that characterize the California Current System.


Individual variability Dive behavior Sea lion Zalophus californianus California Current 



We thank Seth Newsome for helpful suggestions that improved the quality of this manuscript, the US. Navy for logistical support, and all of the field volunteers, without which this research would not have been possible. Data collection was part of the Tagging of Pelagic Predators (TOPP) project, and funded by the California Sea Grant Program, National Oceanographic Partnership Program, the Office of Naval Research, and the Moore, Packard, and Sloan Foundations. EAM was supported on a grant from the E & P Sound and Marine Life Joint Industry Programme (#22 07–23). Animal handling was permitted under NMFS permit #87-1593, 1851 and approved by the University of California Santa Cruz Institutional Animal Care and Use Committee.

Author contribution statement

EAM and DPC conceived the study, DPC, PWR, SES, CEK, and MF lead fieldwork, EAM and PWR analyzed the data, EAM wrote the manuscript, with contributions from all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2016_3732_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)
442_2016_3732_MOESM2_ESM.xlsx (122 kb)
Supplementary material 2 (XLSX 121 kb)
442_2016_3732_MOESM3_ESM.docx (25.9 mb)
Supplementary material 3 (DOCX 26499 kb)


  1. Antonelis GA, Stewart BS, Perryman WF (1990) Foraging characteristics of female northern fur seals (Callorhinus ursinus) and California sea lions (Zalophus californianus). Can J Zool 68:150–158. doi: 10.1139/z90-022 CrossRefGoogle Scholar
  2. Araújo MS, Martins EG, Cruz LD et al (2010) Nested diets: a novel pattern of individual-level resource use. Oikos 119:81–88. doi: 10.1111/j.1600-0706.2009.17624.x CrossRefGoogle Scholar
  3. Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x CrossRefPubMedGoogle Scholar
  4. Arnould JPY, Boyd IL (1995) Temporal patterns of milk production in Antarctic fur seals (Arctocephalus gazella). J Zool Lond 237:1–12CrossRefGoogle Scholar
  5. Arnould JP, Hindell MA (1999) The composition of Australian fur seal (Arctocephalus pusillus doriferus) milk throughout lactation. Physiol Biochem Zool 72:605–612. doi: 10.1086/316702 CrossRefPubMedGoogle Scholar
  6. Arnould JPY, Hindell MA (2001) Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can J Zool 79:35–48. doi: 10.1139/cjz-79-1-35 CrossRefGoogle Scholar
  7. Arnould J, Boyd IL, Speakman JR (1996) The relationship between foraging behavior and energy expenditure in Antarctic fur seals. J Zool Soc Lond 239:769–782CrossRefGoogle Scholar
  8. Augé AA, Chilvers BL, Moore AB, Davis LS (2014) Importance of studying foraging site fidelity for spatial conservation measures in a mobile predator. Anim Conserv 17:61–71. doi: 10.1111/acv.12056 CrossRefGoogle Scholar
  9. Baylis AMM, Orben RA, Arnould JPY et al (2015) Diving deeper into individual foraging specializations of a large marine predator, the southern sea lion. Oecologia 179:1053–1065. doi: 10.10007/s00442-015-3421-4 CrossRefPubMedGoogle Scholar
  10. Bolnick DI, Svanbäck R, Fordyce JA et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi: 10.1086/343878 CrossRefPubMedGoogle Scholar
  11. Bolnick DI, Amarasekare P, Araújo MS et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. doi: 10.1016/j.tree.2011.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boyd IL, Arnould JPY, Barton T, Croxall JP (1994) Foraging behavior of Antarctic fur seals during periods of contrasting prey abundance. J Anim Ecol 63:703–713CrossRefGoogle Scholar
  13. Buckley TW, Livingston PA (1997) Geographic variation in the diet of Pacific hake, with a note on cannibalism. Calif Coop Ocean Fish Investig Rep 38:53–62Google Scholar
  14. Cantor M, Pires MM, Longo GO et al (2013) Individual variation in resource use by opossums leading to nested fruit consumption. Oikos 122:1085–1093. doi: 10.1111/j.1600-0706.2012.00070.x CrossRefGoogle Scholar
  15. Carretta J V, Oleson EM, Weller DW, et al (2015) US Pacific marine mammal stock assessments: 2014. NOAA-TM-NMFS-SWFSC-549. doi:  10.7289/V5/TM-SWFSC-549
  16. Ceia FR, Ramos JA (2015) Individual specialization in the foraging and feeding strategies of seabirds: a review. Mar Biol. doi: 10.1007/s00227-015-2735-4 Google Scholar
  17. Checkley DM, Barth JA (2009) Patterns and processes in the California Current System. Prog Oceanogr 83:49–64. doi: 10.1016/j.pocean.2009.07.028 CrossRefGoogle Scholar
  18. Cherel Y, Hobson K (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. doi: 10.3354/meps329281 CrossRefGoogle Scholar
  19. Chilvers B, Wilkinson I (2009) Diverse foraging strategies in lactating New Zealand sea lions. Mar Ecol Prog Ser 378:299–308. doi: 10.3354/meps07846 CrossRefGoogle Scholar
  20. Costa DP, Gales NJ (2000) Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J Exp Biol 203:3655–3665PubMedGoogle Scholar
  21. Costa DP, Gentry RL (1986) Reproductive energetics of northern fur seals. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies on land and at sea. Princeton University Press, Princeton, New Jersey, pp 79–101Google Scholar
  22. Costa DP, Kuhn CE, Weise MJ et al (2004) When does physiology limit the foraging behaviour of freely diving mammals? Int Congr Ser 1275:359–366. doi: 10.1016/j.ics.2004.08.058 CrossRefGoogle Scholar
  23. Costa DP, Robinson PW, Arnould JPY et al (2010) Accuracy of ARGOS locations of pinnipeds at-sea estimated using Fastloc GPS. PLoS One 5:e8677. doi: 10.1371/journal.pone.0008677 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Feldkamp SD, DeLong RL, Antonelis GA (1989) Diving patterns of California sea lions, Zalophus californianus. Can J Zool 67:872–883. doi: 10.1139/z89-129 CrossRefGoogle Scholar
  25. Goldsworthy SD (2006) Maternal strategies of the New Zealand fur seal: evidence for interannual variability in provisioning and pup growth strategies. Aust J Zool 54:31–44. doi: 10.1071/ZO05041 CrossRefGoogle Scholar
  26. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145. doi: 10.1016/S0079-6611(00)00033-1 CrossRefGoogle Scholar
  27. Harris JD (2016) Estimation of an unobservable transition: from dependence to weaning in the California sea lion (Zalophus californianus). Master thesis, School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA. doi: 10.1017/CBO9781107415324.004
  28. Hoskins AJ, Costa DP, Wheatley KE et al (2015) Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar Ecol Prog Ser 526:227–239. doi: 10.3354/meps11200 CrossRefGoogle Scholar
  29. Hughes AR, Inouye BD, Johnson MTJ et al (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623. doi: 10.1111/j.1461-0248.2008.01179.x CrossRefPubMedGoogle Scholar
  30. Huynh MD, Kitts DD (2009) Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chem 114:912–918. doi: 10.1016/j.foodchem.2008.10.038 CrossRefGoogle Scholar
  31. Kernaléguen L, Cazelles B, Arnould JPY et al (2012) Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers. PLoS One 7:e32916. doi: 10.1371/journal.pone.0032916 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kernaléguen L, Arnould JPY, Guinet C, Cherel Y (2015) Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals. J Anim Ecol 84:1081–1091. doi: 10.1111/1365-2656.12347 CrossRefPubMedGoogle Scholar
  33. Kernaléguen L, Dorville N, Ierodiaconou D et al (2016) From video recordings to whisker stable isotopes: a critical evaluation of timescale in assessing individual foraging specialisation in Australian fur seals. Oecologia 180:657–670. doi: 10.1007/s00442-015-3407-2 CrossRefPubMedGoogle Scholar
  34. Killen SS, Marras S, Mckenzie DJ (2011) Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J Anim Ecol 80:1024–1033. doi: 10.1111/j.1365-2656.2011.01844.x CrossRefPubMedGoogle Scholar
  35. Kuhn CE, Costa DP (2014) Interannual variation in the at-sea behavior of California sea lions (Zalophus californianus). Mar Mammal Sci 30:1297–1319. doi: 10.1111/mms.12110 CrossRefGoogle Scholar
  36. Kuhn C, Tremblay Y, Ream R, Gelatt T (2010) Coupling GPS tracking with dive behavior to examine the relationship between foraging strategy and fine-scale movements of northern fur seals. Endanger Species Res 12:125–139. doi: 10.3354/esr00297 CrossRefGoogle Scholar
  37. Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18CrossRefGoogle Scholar
  38. Leising AW, Schroeder ID, Bograd SJ et al (2014) State of the California Current 2013-14: El Niño looming. Calif Coop Ocean Fish Investig Rep 55:51–87Google Scholar
  39. Litz MNC, Brodeur RD, Emmett RL et al (2010) Effects of variable oceanographic conditions on forage fish lipid content and fatty acid composition in the northern California Current. Mar Ecol Prog Ser 405:71–85. doi: 10.3354/meps08479 CrossRefGoogle Scholar
  40. Livingston PA (1983) Food habitat of Pacific whiting, Merluccius productus, off the west coast of North America, 1967 and 1980. Fish Bull 81:629–636Google Scholar
  41. Lowry MS, Stewart BS, Heath CB et al (1988) Seasonal and annual variability in the diet of California sea lions Zalophus californianus at San Nicolas Island, California, 1981-86. Fish Bull 89:331–336Google Scholar
  42. Lowther A, Goldsworthy S (2011) Detecting alternate foraging ecotypes in Australian sea lion (Neophoca cinerea) colonies using stable isotope analysis. Mar Mammal Sci 27:567–586. doi: 10.1111/j.1748-7692.2010.00425.x CrossRefGoogle Scholar
  43. Lowther A, Harcourt R, Hamer D, Goldsworthy S (2011) Creatures of habit: foraging habitat fidelity of adult female Australian sea lions. Mar Ecol Prog Ser 443:249–263. doi: 10.3354/meps09392 CrossRefGoogle Scholar
  44. Lowther AD, Harcourt RG, Goldsworthy SD, Stow A (2012) Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim Behav 83:691–701. doi: 10.1016/j.anbehav.2011.12.015 CrossRefGoogle Scholar
  45. McClatchie S, Field J, Thompson AR et al (2016) Food limitation of sea lion pups and the decline of forage off central and southern California. R Soc Open Sci 3:150628. doi: 10.1098/rsos.150628 CrossRefPubMedPubMedCentralGoogle Scholar
  46. McGowan JA, Bograd SJ, Lynn RJ, Miller AJ (2003) The biological response to the 1977 regime shift in the California Current. Deep Sea Res Part II Top Stud Oceanogr 50:2567–2582. doi: 10.1016/S0967-0645(03)00135-8 CrossRefGoogle Scholar
  47. Melin SR, Delong RL, Thomason JR, VanBlaricom GR (2000) Attendance patterns of California sea lion (Zalophus californianus) females and pups during the non-breeding season at San Miguel Island. Mar Mammal Sci 16:169–185CrossRefGoogle Scholar
  48. Melin S, DeLong R, Siniff D (2008) The effects of El Niño on the foraging behavior of lactating California sea lions (Zalophus californianus californianus) during the nonbreeding season. Can J Zool 86:192–206. doi: 10.1139/Z07-132 CrossRefGoogle Scholar
  49. Melin SR, Orr AJ, Harris JD, Delong RL (2012) California sea lions: an indicator for integrated ecosystem assessment of the California Current System. Calif Coop Ocean Fish Investig Rep 53:140–152Google Scholar
  50. Newsome SD, Tinker MT, Gill VA et al (2015) The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters. Oecologia 178:45–59. doi: 10.1007/s00442-015-3223-8 CrossRefPubMedGoogle Scholar
  51. Ono KA, Boness DJ, Oftedal OT (1985) The effect of a natural environmental disturbance on maternal investment and pup behavior in the California sea lion. Behav Ecol Sociobiol 21:109–118CrossRefGoogle Scholar
  52. Orr A, VanBlaricom G, DeLong R et al (2011) Intraspecific comparison of diet of California sea lions (Zalophus californianus) assessed using fecal and stable isotope analyses. Can J Zool 89:109–122. doi: 10.1139/Z10-101 CrossRefGoogle Scholar
  53. Patrick SC, Weimerskirch H (2014) Personality, foraging and fitness consequences in a long lived seabird. PLoS One. doi: 10.1371/journal.pone.0087269 Google Scholar
  54. Rayner MJ, Hartill BW, Hauber ME, Phillips RA (2010) Central place foraging by breeding Cook’s petrel Pterodroma cookii: foraging duration reflects range, diet and chick meal mass. Mar Biol 157:2187–2194. doi: 10.1007/s00227-010-1483-8 CrossRefGoogle Scholar
  55. Rosenblatt AE, Nifong JC, Heithaus MR et al (2015) Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178:5–16. doi: 10.1007/s00442-014-3201-6 CrossRefPubMedGoogle Scholar
  56. Schreer JF, Kovacs KM, O’Hara Hines RJ (2001) Comparative diving patterns of pinnipeds and seabirds. Ecol Monogr 71:137–162. doi:10.1890/0012-9615(2001)071[0137:CDPOPA]2.0.CO;2CrossRefGoogle Scholar
  57. Staniland IJ, Boyd IL, Reid K (2007) An energy-distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar Biol 152:233–241. doi: 10.1007/s00227-007-0698-9 CrossRefGoogle Scholar
  58. Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7:993–1012Google Scholar
  59. Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci USA 105:560–565. doi: 10.1073/pnas.0709263105 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tinker M, Guimarães PR, Novak M et al (2012) Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol Lett 15:475–483. doi: 10.1111/j.1461-0248.2012.01760.x CrossRefGoogle Scholar
  61. Tremblay Y, Cherel Y (2000) Benthic and pelagic dives: a new foraging behaviour in rockhopper penguins. Mar Ecol Prog Ser 204:257–267CrossRefGoogle Scholar
  62. Villegas-Amtmann S, Costa D, Tremblay Y et al (2008) Multiple foraging strategies in a marine apex predator, the Galapagos sea lion Zalophus wollebaeki. Mar Ecol Prog Ser 363:299–309. doi: 10.3354/meps07457 CrossRefGoogle Scholar
  63. Villegas-Amtmann S, Simmons SE, Kuhn CE et al (2011) Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators. PLoS One 6:e23166. doi: 10.1371/journal.pone.0023166 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Villegas-Amtmann S, Jeglinski JWE, Costa DP et al (2013) Individual foraging strategies reveal niche overlap between endangered Galapagos pinnipeds. PLoS One 8:e70748. doi: 10.1371/journal.pone.0070748 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Violle C, Enquist BJ, McGill BJ et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252. doi: 10.1016/j.tree.2011.11.014 CrossRefPubMedGoogle Scholar
  66. Weise M, Harvey JT (2008) Temporal variability in ocean climate and California sea lion diet and biomass consumption: implications for fisheries management. Mar Ecol Prog Ser 373:157–172. doi: 10.3354/meps07737 CrossRefGoogle Scholar
  67. Weise MJ, Harvey JT, Costa DP (2010) The role of body size in individual-based foraging strategies of a top marine predator. Ecology 91:1004–1015CrossRefPubMedGoogle Scholar
  68. Wolf JB, Tautz D, Trillmich F (2007) Galápagos and Californian sea lions are separate species: genetic analysis of the genus Zalophus and its implications for conservation management. Front Zool 4:20. doi: 10.1186/1742-9994-4-20 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zeidberg LD, Butler JL, Ramon D et al (2012) Estimation of spawning habitats of market squid (Doryteuthis opalescens) from field surveys of eggs off Central and Southern California. Mar Ecol 33:326–336. doi: 10.1111/j.1439-0485.2011.00498.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. A. McHuron
    • 1
  • P. W. Robinson
    • 1
  • S. E. Simmons
    • 2
  • C. E. Kuhn
    • 3
  • M. Fowler
    • 4
  • D. P. Costa
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzUSA
  2. 2.Marine Mammal CommissionBethesdaUSA
  3. 3.National Marine Mammal LaboratoryAlaska Fisheries Science Center/NOAASeattleUSA
  4. 4.Springfield CollegeSpringfieldUSA

Personalised recommendations