, Volume 182, Issue 4, pp 961–971 | Cite as

Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction

  • Yang Wang
  • Zhi-Gao Zeng
  • Shu-Ran Li
  • Jun-Huai Bi
  • Wei-Guo Du
Physiological ecology - original research


Extreme high temperatures are occurring more frequently with ongoing anthropogenic climate warming, but the experimental tests of the effects of high temperatures on terrestrial vertebrates in natural conditions are rare. In this study, we investigated the effects of extreme high temperatures on female reproduction and offspring traits of multi-ocellated racerunners (Eremias multiocellata) kept in field enclosures in the desert steppe of Inner Mongolia. Our studies indicate that high temperatures significantly affect the gestation period and reproductive output of females and the offspring sex ratio, but have little impact on offspring body size and mass. More interestingly, we found that the effect of extreme high temperatures on female reproductive output was not consistent between two consecutive years that differed in precipitation. Low precipitation may aggravate the impact of climate warming on lizards and negatively affect the survival of lizards in the desert steppe. Our results provide evidence that temperature interacts with precipitation to determine the life history of lizards, and they suggest that a drier and hotter environment, such as the future climate in arid mid-latitude areas, will likely impose severe pressure on lizard populations, which are an important component of the food web in desert areas around the world.


Eremias multiocellata Lizard Reproductive output Thermal environment Water 



We thank Shao-Yong Chen and Zhi-Liang Jie for their assistance in the field and laboratory. This work was supported by grants from the One Hundred Talents Program of the Chinese Academy of Sciences and the National Natural Sciences Foundation of China (31372203).

Author contribution statement

W. G. D. designed the study, Y. W., Z. G. Z., S. R. L. and J. H. B. conducted experiments, W. G. D. and Y. W. analysed data, and wrote the paper.

Supplementary material

442_2016_3727_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)


  1. Adler PB, Drake JM (2008) Environmental variation, stochastic extinction, and competitive coexistence. Am Nat 172:E186–E195. doi: 10.1086/591678 CrossRefGoogle Scholar
  2. Adler RF, Gu GJ, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res-Atmos 113:D22104. doi: 10.1029/2008jd010536 CrossRefGoogle Scholar
  3. Angilletta MJ (2009)Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University PressGoogle Scholar
  4. Bauerfeind SS, Fischer K (2014) Simulating climate change: temperature extremes but not means diminish performance in a widespread butterfly. Popul Ecol 56:239–250. doi: 10.1007/s10144-013-0409-y CrossRefGoogle Scholar
  5. Bell K, Blomberg S, Schwarzkopf L (2013) Detrimental influence on performance of high temperature incubation in a tropical reptile: is cooler better in the tropics? Oecologia 171:83–91. doi: 10.1007/s00442-012-2409-6 CrossRefPubMedGoogle Scholar
  6. Birchard GF, Deeming DC (2004) Effects of incubation temperature. In: Deeming DC (ed) Reptilian incubation: environment, evolution and behaviour. Nottingham University Press, NottinghamGoogle Scholar
  7. Bonebrake TC, Mastrandrea MD (2010) Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. P Natl Acad Sci USA 107:12581–12586. doi: 10.1073/pnas.0911841107 CrossRefGoogle Scholar
  8. Bradshaw WE, Holzapfel CM (2006) Climate change: evolutionary response to rapid climate change. Science 312:1477–1478. doi: 10.1126/science.1127000 CrossRefPubMedGoogle Scholar
  9. Chamaille-Jammes S, Massot M, Aragon P, Clobert J (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Chang Biol 12:392–402. doi: 10.1111/j.1365-2486.2005.01088.x CrossRefGoogle Scholar
  10. Choi G et al (2009) Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int J Climatol 29:1906–1925. doi: 10.1002/joc.1979 CrossRefGoogle Scholar
  11. Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751. doi: 10.1086/660021 CrossRefPubMedGoogle Scholar
  12. Costantini D, Carello L, Dell’Omo G (2010) Patterns of covariation among weather conditions, winter North Atlantic Oscillation index and reproductive traits in Mediterranean kestrels. J Zool 280:177–184. doi: 10.1111/j.1469-7998.2009.00649.x CrossRefGoogle Scholar
  13. Deeming DC (2004) Reptilian incubation: environment, evolution and behaviour. Nottingham University Press, NottinghamGoogle Scholar
  14. Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706. doi: 10.1038/nature09407 CrossRefPubMedGoogle Scholar
  15. Dobkin DS, Olivieri I, Ehrlich PR (1987) Rainfall and the interaction of microclimate with larval resources in the population-dynamics of checkerspot butterflies (Euphydryas editha) inhabiting serpentine grassland. Oecologia 71:161–166. doi: 10.1007/Bf00377280 CrossRefGoogle Scholar
  16. Du WG, Ji X (2003) The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. J Therm Biol 28:279–286. doi: 10.1016/S0306-4565(03)00003-2 CrossRefGoogle Scholar
  17. Du WG, Ji X (2006) Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae). J Exp Zool 305A:47–54. doi: 10.1002/jez.a.243 CrossRefGoogle Scholar
  18. Du W-G, Shine R (2015) The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biol Rev 90:19–30. doi: 10.1111/brv.12089 CrossRefPubMedGoogle Scholar
  19. Du W-G, Yan S-J, Ji X (2000) Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Therm Biol 25:197–202. doi: 10.1016/S0306-4565(99)00022-4 CrossRefGoogle Scholar
  20. Dubey S, Shine R (2011) Predicting the effects of climate change on reproductive fitness of an endangered montane lizard, Eulamprus leuraensis (Scincidae). Clim Change 107:531–547. doi: 10.1007/s10584-010-9963-x CrossRefGoogle Scholar
  21. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi: 10.1126/science.289.5487.2068 CrossRefPubMedGoogle Scholar
  22. Fieldhouse DJ, Palmer WC (1965) The climate of the northeast: meteorological and agricultural drought. University of Delaware, Agricultural Experiment Station, NewarkGoogle Scholar
  23. Glickman TS (2000) Glossary of Meteorology, 2nd edn. American Meteorological Society, Boston, MassGoogle Scholar
  24. Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 5:614–618. doi: 10.1046/j.1461-0248.2002.00367.x CrossRefGoogle Scholar
  25. Huey RB, Tewksbury JJ (2009) Can behavior douse the fire of climate warming? P Natl Acad Sci USA 106:3647–3648. doi: 10.1073/pnas.0900934106 CrossRefGoogle Scholar
  26. Ihlow F et al (2012) On the brink of extinction? How climate change may affect global chelonian species richness and distribution. Glob Chang Biol 18:1520–1530. doi: 10.1111/j.1365-2486.2011.02623.x CrossRefGoogle Scholar
  27. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  28. James CD, Whitford WG (1994) An experimental study of phenotypic plasticity in the clutch size of a lizard. Oikos 70:49–56. doi: 10.2307/3545698 CrossRefGoogle Scholar
  29. Janzen FJ (1994) Climate-change and temperature-dependent sex determination in reptiles. P Natl Acad Sci USA 91:7487–7490. doi: 10.1073/pnas.91.16.7487 CrossRefGoogle Scholar
  30. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:angoce]2.0CrossRefGoogle Scholar
  31. Ji X, Lin L-H, Luo L-G, Lu H-L, Gao J-F, Han J (2006) Gestation temperature affects sexual phenotype, morphology, locomotor performance and growth of neonatal brown forest skink, Sphenomorphus indicus. Biol J Linn Soc 88:453–463. doi: 10.1111/j.1095-8312.2006.00633.x CrossRefGoogle Scholar
  32. Johnston IA, Bennett AF (1996) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. P Natl Acad Sci USA 106:3835–3840. doi: 10.1073/pnas.0808913106 CrossRefGoogle Scholar
  34. Li H, Qu Y-F, Ding G-H, Ji X (2011) Life-history variation with respect to experienced thermal environments in the lizard, Eremias multiocellata (Lacertidae). Zool Sci 28:332–338. doi: 10.2108/zsj.28.332 CrossRefPubMedGoogle Scholar
  35. Lorenzon P, Clobert J, Massot M (2001) The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution 55:392–404CrossRefPubMedGoogle Scholar
  36. Lu H-L, Wang Y, Tang W-Q, Du W-G (2013) Experimental evaluation of reproductive response to climate warming in an oviparous skink. Integr Zool 8:175–183. doi: 10.1111/1749-4877.12025 CrossRefPubMedGoogle Scholar
  37. Lu Z-C, Wang Y-M, Zhu S-G, Yu H, Guo J-Y, Wan F-H (2014) Trade-offs between survival, longevity, and reproduction, and variation of survival tolerance in Mediterranean Bemisia tabaci after temperature stress. J Insect Sci 14:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ma L, Sun B-J, Li S-R, Sha W, Du W-G (2014) Maternal thermal environment induces plastic responses in the reproductive life history of oviparous lizards. Physiol Biochem Zool 87:677–683. doi: 10.1086/678050 CrossRefPubMedGoogle Scholar
  39. Madsen T, Shine R (2000) Rain, fish and snakes: climatically driven population dynamics of Arafura filesnakes in tropical Australia. Oecologia 124:208–215. doi: 10.1007/s004420050008 CrossRefGoogle Scholar
  40. Marquis O, Massot M, Le Galliard JF (2008) Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology 89:2575–2583. doi: 10.1890/07-1211.1 CrossRefPubMedGoogle Scholar
  41. McKinnon L, Picotin M, Bolduc E, Juillet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90:961–971. doi: 10.1139/z2012-064 CrossRefGoogle Scholar
  42. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi: 10.1126/science.1098704 CrossRefPubMedGoogle Scholar
  43. Meehl GA, Tebaldi C, Teng H, Peterson TC (2007) Current and future US weather extremes and El Nino. Geophys Res Lett 34:6. doi: 10.1029/2007gl031027 Google Scholar
  44. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717. doi: 10.1111/j.1461-0248.2007.01061.x CrossRefPubMedGoogle Scholar
  45. Mitchell NJ, Kearney MR, Nelson NJ, Porter WP (2008) Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? P Roy Soc B-Biol Sci 275:2185–2193. doi: 10.1098/rspb.2008.0438 CrossRefGoogle Scholar
  46. Ohlberger J (2013) Climate warming and ectotherm body size—from individual physiology to community ecology. Funct Ecol 27:991–1001. doi: 10.1111/1365-2435.12098 CrossRefGoogle Scholar
  47. Olsson M, Shine R (1997) The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early clutches are better. J Evol Biol 10:369–381. doi: 10.1007/s000360050030 CrossRefGoogle Scholar
  48. Pachauri RK, Meyer LA, IPCC (2014) Climate change 2014: synthesis report. IPCC, Geneva, SwitzerlandGoogle Scholar
  49. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  50. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872. doi: 10.1111/j.1365-2486.2007.01404.x CrossRefGoogle Scholar
  51. Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:L20714. doi: 10.1029/2012gl053361 Google Scholar
  52. Pianka ER (1986) Ecology and natural history of desert lizards. Princeton University Press, PrincetonGoogle Scholar
  53. Qian T, Dai A, Trenberth KE (2007) Hydroclimatic trends in the Mississippi River basin from 1948 to 2004. J Climate 20:4599–4614. doi: 10.1175/Jcli4262.1 CrossRefGoogle Scholar
  54. Qu Y-F, Li H, Gao J-F, Xu X-F, Ji X (2011) Thermal preference, thermal tolerance and the thermal dependence of digestive performance in two Phrynocephalus lizards (Agamidae), with a review of species studied. Curr Zool 57:684–700CrossRefGoogle Scholar
  55. Robert KA, Thompson MB (2001) Sex determination—Viviparous lizard selects sex of embryos. Nature 412:698–699. doi: 10.1038/35089135 CrossRefPubMedGoogle Scholar
  56. Rodriguez-Diaz T, Gonzalez F, Ji X, Brana F (2010) Effects of incubation temperature on hatchling phenotypes in an oviparous lizard with prolonged egg retention: are the two main hypotheses on the evolution of viviparity compatible? Zoology 113:33–38. doi: 10.1016/j.zool.2009.05.001 CrossRefPubMedGoogle Scholar
  57. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi: 10.1038/nature01333 CrossRefPubMedGoogle Scholar
  58. Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. P Natl Acad Sci USA 105:20776–20780. doi: 10.1073/pnas.0806886105 CrossRefGoogle Scholar
  59. Schulte-Hostedde A, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163CrossRefGoogle Scholar
  60. Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes. Nat Clim Chang 4:320CrossRefGoogle Scholar
  61. Sinervo B et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi: 10.1126/science.1184695 CrossRefPubMedGoogle Scholar
  62. Smith MD (2011) The ecological role of climate extremes: current understanding and future prospects. J Ecol 99:651–655. doi: 10.1111/j.1365-2745.2011.01833.x CrossRefGoogle Scholar
  63. Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain? J Clim 20:4801–4818. doi: 10.1175/Jcli4263.1 CrossRefGoogle Scholar
  64. Tang X-L et al (2012) Effects of gestation temperature on offspring sex and maternal reproduction in a viviparous lizard (Eremias multiocellata) living at high altitude. J Therm Biol 37:438–444. doi: 10.1016/j.jtherbio.2012.03.002 CrossRefGoogle Scholar
  65. Telemeco RS, Radder RS, Baird TA, Shine R (2010) Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc 100:642–655. doi: 10.1111/j.1095-8312.2010.01439.x CrossRefGoogle Scholar
  66. Thompson DM, Cole JE, Shen GT, Tudhope AW, Meehl GA (2015) Early twentieth-century warming linked to tropical Pacific wind strength. Nat Geosci 8:117–121. doi: 10.1038/Ngeo2321 CrossRefGoogle Scholar
  67. Triggs A, Knell RJ (2012) Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella. J Anim Ecol 81:386–394. doi: 10.1111/j.1365-2656.2011.01920.x CrossRefPubMedGoogle Scholar
  68. Valenzuela N, Lance V (2004) Temperature dependent sex determination in vertebrates. Smithsonian Books, Washington DCGoogle Scholar
  69. Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32:L23822. doi: 10.1029/2005gl024379 CrossRefGoogle Scholar
  70. Wang Z, Lu H-L, Ma L, Ji X (2014) Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia 174:639–649. doi: 10.1007/s00442-013-2811-8 CrossRefPubMedGoogle Scholar
  71. Wapstra E et al (2009) Climate effects on offspring sex ratio in a viviparous lizard. J Anim Ecol 78:84–90. doi: 10.1111/j.1365-2656.2008.01470.x CrossRefPubMedGoogle Scholar
  72. Warner DA, Shine R (2007) Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size. Oecologia 154:65–73. doi: 10.1007/s00442-007-0809-9 CrossRefPubMedGoogle Scholar
  73. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351. doi: 10.1175/1520-0442(2004)017<2335:Aspdsi>2.0.Co;2 CrossRefGoogle Scholar
  74. Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol 18:1491–1498. doi: 10.1111/j.1365-2486.2012.02656.x CrossRefGoogle Scholar
  75. Wolkovich EM et al (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497. doi: 10.1038/nature11014 PubMedGoogle Scholar
  76. Zeng Z-G et al (2014) Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem. Biol Conserv 179:86–92. doi: 10.1016/j.biocon.2014.09.011 CrossRefGoogle Scholar
  77. Zhang D-J, Tang X-L, Yue F, Chen Z, Li R-D, Chen Q (2010) Effect of gestation temperature on sexual and morphological phenotypes of offspring in a viviparous lizard, Eremias multiocellata. J Therm Biol 35:129–133. doi: 10.1016/j.jtherbio.2010.01.003 CrossRefGoogle Scholar
  78. Zhao E-M, Zhao K-T, Zhou K-Y (1999) Fauna Sinica Reptilia Vol. 2 Squamata. Chinese Science Press, BeijingGoogle Scholar
  79. Zittier ZMC, Hirse T, Portner HO (2013) The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid-base balance in the spider crab, Hyas araneus. Mar Biol 160:2049–2062. doi: 10.1007/s00227-012-2073-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yang Wang
    • 1
    • 2
  • Zhi-Gao Zeng
    • 1
  • Shu-Ran Li
    • 1
    • 2
  • Jun-Huai Bi
    • 3
  • Wei-Guo Du
    • 1
  1. 1.Key Laboratory of Animal Ecology and Conservational BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.College of Life SciencesInner Mongolia Normal UniversityHohhotChina

Personalised recommendations