Oecologia

, Volume 182, Issue 4, pp 1203–1211 | Cite as

Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal

Global change ecology – original research

Abstract

Though a number of effects of artificial light pollution on behavior and physiology have been described, there is little understanding of their consequences for the growth and distribution of populations. Here, we document impacts of light pollution on aspects of firefly population ecology and underlying mating behaviors. Many firefly species have a unique communication system whereby bioluminescent flashes are used in courtship displays to find and attract mates. We performed a series of manipulative field experiments in which we quantified the effects of adding artificial nighttime lighting on abundances and total flashing activity of fireflies, courtship behaviors and mating between tethered females and free-flying males, and dispersal distances of marked individuals. We show that light pollution reduces flashing activities in a dark-active firefly species (Photuris versicolor) by 69.69 % and courtship behavior and mating success in a twilight-active species (Photinus pyralis). Though courtship behavior and mating success of Photinus pyralis was reduced by light pollution, we found no effects of light pollution on male dispersal in this species. Our findings suggest that light pollution is likely to adversely impact firefly populations, and contribute to wider discussions about the ecological consequences of sensory pollution.

Keywords

Fireflies Communication Sensory ecology Population ecology Anthropogenic disturbance 

References

  1. Allard HA (1931) The photoperiodism of the firefly Photinus pyralis Linn. Its relation to the evening twilight and other conditions. Proc Ent Soc Wash 33:153Google Scholar
  2. Azam C, Kerbiriou C, Vernet A et al (2015) Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Glob Chang Biol 21:4333–4341. doi:10.1111/gcb.13036 CrossRefPubMedGoogle Scholar
  3. Bauer CM, Nachman G, Lewis SM et al (2013) Modeling effects of harvest on firefly population persistence. Ecol Modell 256:43–52. doi:10.1016/j.ecolmodel.2013.02.018 CrossRefGoogle Scholar
  4. Bee M, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776. doi:10.1016/j.anbehav.2007.03.019 CrossRefGoogle Scholar
  5. Bird S, Parker J (2014) Low levels of light pollution may block the ability of male glow-worms (Lampyris noctiluca L.) to locate females. J Insect Conserv 18:737–743. doi:10.1007/s10841-014-9664-2 CrossRefGoogle Scholar
  6. Buck JB (1937) Studies on the firefly. I. The effects of light and other agents on flashing in Photinus pyralis, with special reference to periodicity and diurnal rhythm. Physiol Zool 10:45–58CrossRefGoogle Scholar
  7. Candolin U, Salesto T, Evers M (2007) Changed environmental conditions weaken sexual selection in sticklebacks. J Evol Biol 20(1):233–239CrossRefPubMedGoogle Scholar
  8. Cinzano P, Falchi F, Elvidge CD (2001) The first World Atlas of the artificial night sky brightness. Mon Not R Astron Soc 328(3):689–707CrossRefGoogle Scholar
  9. Costello R, Symes LB (2014) Effects of anthropogenic noise on male signaling behaviour and female phonotaxis in Oecanthus tree crickets. Anim Behav 95:15–22. doi:10.1016/j.anbehav.2014.05.009 CrossRefGoogle Scholar
  10. Cratsley CK, Lewis SM (2005) Seasonal variation in mate choice of Photinus ignitus fireflies. Ethology 111:89–100. doi:10.1111/j.1439-0310.2004.01049.x CrossRefGoogle Scholar
  11. Dreisig H (1974) Observations on the luminescence of the larval glowworm, Lampyris noctiluca. Insect Syst Evol 5:103–109CrossRefGoogle Scholar
  12. Dreisig H (1975) Environmental control of the daily onset of luminescent activity in glowworms and fireflies (Coleoptera: Lampyridae). Oecologia 18:85–99CrossRefGoogle Scholar
  13. Eisenbeis G (2006) Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 281–304Google Scholar
  14. Elvidge CD, Keith DM, Tuttle BT, Baugh KE (2010) Spectral identification of lighting type and character. Sensors 10:3961–3988. doi:10.3390/s100403961 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Faust L, De Cock R, Lewis S (2012) Thieves in the night: kleptoparasitism by fireflies in the genus Photuris Dejean (Coleoptera: Lampyridae). Coleopt Bull 66:1–6CrossRefGoogle Scholar
  16. Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11:305–313. doi:10.1890/120183 CrossRefGoogle Scholar
  17. Frank KD (2006) Effects of artificial night lighting on moths. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 345–364Google Scholar
  18. Gaston KJ, Bennie J (2014) Demographic effects of artificial nighttime lighting on animal populations. Environ Rev 8:1–8. doi:10.1139/er-2014-0005 Google Scholar
  19. Gaston KJ, Duffy JP, Gaston S et al (2014) Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176:917–931. doi:10.1007/s00442-014-3088-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Girling RD, Lusebrink I, Farthing E et al (2013) Diesel exhaust rapidly degrades floral odours used by honeybees. Sci Rep 3:5. doi:10.1038/srep02779 CrossRefGoogle Scholar
  21. Hagen O et al (2015) Artificial night lighting reduces firefly (Coleoptera: Lampyridae) occurrence in Sorocaba, Brazil. Adv Entomol 3:24–32CrossRefGoogle Scholar
  22. Hori M et al (1978) Natural population of adult of Luciola cruciata. Insectarium 15:4–11Google Scholar
  23. Lall AB, Worthy KM (2000) Action spectra of the female’s response in the firefly Photinus pyralis (Coleoptera: Lampyridae): evidence for an achromatic detection of the bioluminescent optical signal. J Insect Physiol 46:965–968. doi:10.1016/S0022-1910(99)00206-1 CrossRefPubMedGoogle Scholar
  24. Lall AB, Seliger HH, Biggley WH, Lloyd JE (1980) Ecology of colors of firefly bioluminescence. Science 210:560–562CrossRefPubMedGoogle Scholar
  25. Lewis SM, Wang OT (1991) Reproductive ecology of two species of Photinus. Pysche 98:293–307. doi:10.1155/1991/76452 CrossRefGoogle Scholar
  26. Lewis SM, Cratsley CK, Rooney Ja (2004) Nuptial gifts and sexual selection in Photinus fireflies. Integr Comp Biol 44:234–237. doi:10.1093/icb/44.3.234 CrossRefPubMedGoogle Scholar
  27. Lloyd JE (1966) Studies on the flash communication of Photinus fireflies, vol 130. Miscellaneous Publications, Museum of Zoology, University of Michigan, pp 1–96Google Scholar
  28. Lloyd JE (1971) Bioluminescent communication in insects. Annu Rev Entomol 16:97–122CrossRefGoogle Scholar
  29. Lloyd JE (1980) Male Photuris fireflies mimic sexual signals of their females’ prey. Science 210:669–671. doi:10.1126/science.210.4470.669 CrossRefPubMedGoogle Scholar
  30. Lloyd JE (1990) Firefly semiosystematics and predation: a history. Fla Entomol 73:51–66CrossRefGoogle Scholar
  31. Lloyd JE (2006) Stray light, fireflies, and fireflyers. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 345–364Google Scholar
  32. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191–198. doi:10.1890/1540-9295(2004)002[0191:ELP]2.0.CO;2CrossRefGoogle Scholar
  33. McFrederick QS, Kathilankal JC, Fuentes JD (2008) Air pollution modifies floral scent trails. Atmos Environ 42:2336–2348. doi:10.1016/j.atmosenv.2007.12.033 CrossRefGoogle Scholar
  34. Merritt DJ, Rodgers EM, Amir AF, Clarke AK (2012) Same temporal niche, opposite rhythmicity: two closely related bioluminescent insects with opposite bioluminesce propensity rhythms. Chronobiol Int 29:1336–1344. doi:10.3109/07420528.2012.728549 CrossRefPubMedGoogle Scholar
  35. Miller PJO, Biassoni N, Samuels A et al (2000) Whale songs lengthen in response to sonar. Nature 405:903. doi:10.1038/35016148 CrossRefPubMedGoogle Scholar
  36. Perkin EK, Hölker F, Tockner K (2014) The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biol 59(2):368–377CrossRefGoogle Scholar
  37. Picchi MS, Avolio L, Azzani L et al (2013) Fireflies and land use in an urban landscape: the case of Luciola italica L. (Coleoptera: Lampyridae) in the city of Turin. J Insect Conserv 17:797–805. doi:10.1007/s10841-013-9562-z CrossRefGoogle Scholar
  38. Proppe DS, Sturdy CB, St Clair CC (2013) Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Glob Chang Biol 19:1075–1084. doi:10.1111/gcb.12098 CrossRefPubMedGoogle Scholar
  39. Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Rau P (1932) Rhythmic periodicity and synchronous flashing in the firefly, Photinus pyralis, with notes on Photurus pennsylvanicus. Ecology 13:7CrossRefGoogle Scholar
  41. Rich C, Longcore T (eds) (2006) Ecological consequences of artificial night lighting. Island Press, Washington, DCGoogle Scholar
  42. Rotics S, Dayan T, Kronfeld-Schor N (2011) Effect of artificial night lighting on temporally partitioned spiny mice. J Mamm 92:159–168. doi:10.1644/10-MAMM-A-112.1 CrossRefGoogle Scholar
  43. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi:10.1016/j.aquatox.2004.03.016 CrossRefPubMedGoogle Scholar
  44. Slabbekoorn H (2013) Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim Behav 85:1089–1099CrossRefGoogle Scholar
  45. Slabbekoorn H, Bouton N, van Opzeeland I et al (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25:419–427. doi:10.1016/j.tree.2010.04.005 CrossRefPubMedGoogle Scholar
  46. Small C, Pozzi F, Elvidge C (2005) Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens Environ 96:277–291. doi:10.1016/j.rse.2005.02.002 CrossRefGoogle Scholar
  47. Steele R (2010) Strategically speaking: LCD backlights and lighting drive largest growth yet seen in HB-LED market. LEDs Mag 2:3–26Google Scholar
  48. Takeda M, Amano T, Katoh K (2006) The habitat requirement of the Genji-firefly Luciola cruciata (Coleoptera: Lampyridae), a representative endemic species of Japanese rural landscapes. Biodivers Conserv 15:191–203. doi:10.1007/s10531-004-6903-y CrossRefGoogle Scholar
  49. Van der Reijden ED, Monchamp JD, Lewis SM (1997) The formation, transfer, and fate of spermatophores in Photinus fireflies (Coleoptera: Lampyridae). Can J Zool 75:1202–1207. doi:10.1139/z97-143 CrossRefGoogle Scholar
  50. van Geffen KG, van Eck E, de Boer RA (2015) Artificial light at night inhibits mating in a geometrid moth. Insect Conserv Divers 8:282–287. doi:10.1111/icad.12116 CrossRefGoogle Scholar
  51. Viviani VR, Rocha MY, Hagen O (2010) Fauna de besouros bioluminescentes (Coleoptera: Elateroidea: Lampyridae; Phengodidae, Elateridae) nos municípios de Campinas, Sorocaba-Votorantim e Rio Claro-Limeira (SP, Brasil): biodiversidade e influência da urbanização. Biota Neotrop 10:103–116. doi:10.1590/S1676-06032010000200013 CrossRefGoogle Scholar
  52. Wong BBM, Candolin U, Lindström K, Lindstro K (2007) Signals of male quality in three-spined sticklebacks. Am Nat 170:184–189. doi:10.1086/519398 CrossRefPubMedGoogle Scholar
  53. Woods W, Hendrickson H, Mason J, Lewis SM (2007) Energy and predation costs of firefly courtship signals. Am Nat 170:702–708. doi:10.1086/521964 CrossRefPubMedGoogle Scholar
  54. Yuma M, Ono K (1985) Seasonal changes and population estimate of the adult firefly, Luciola cruciata (Coleoptera: Lampyridae), along the Biwako canal, Kyoto city. Sci Rep Yokosuka City Mus 33:1–11Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.Blandy Experimental FarmUniversity of VirginiaBoyceUSA

Personalised recommendations