, Volume 182, Issue 3, pp 865–875

Disentangling the roles of diversity resistance and priority effects in community assembly

  • Duarte S. Viana
  • Bertha Cid
  • Jordi Figuerola
  • Luis Santamaría
Community ecology – original research


The assembly of many biological communities is constrained by the resistance exerted by resident species to immigration (biotic resistance). Two important mechanisms contribute to the generation of biotic resistance: diversity resistance and priority effects. These mechanisms have been explored through theoretical models and laboratory experiments, but the importance of their interplay in the assembly of natural communities remains untested. We used a mesocosm experiment with communities of aquatic plants and zooplankton assembled from natural propagule banks to test whether and how diversity resistance, mediated by the diversity of the resident community, and priority effects, mediated by the timing of immigrants’ arrival, affect the establishment of immigrant species and community diversity. In plant communities, immigration success decreased with increasing resident-species richness (diversity resistance) and arrival time (priority effects). Further, diversity resistance was stronger in communities colonized later in the season, indicating that these mechanisms interacted to reinforce biotic resistance. This interaction ultimately determined species richness and beta-diversity in plant communities. For zooplankton, in contrast, neither the diversity of resident communities nor the time of arrival affected the establishment of immigrant species. In these communities, beta-diversity was explained by species sorting, namely biotic effects mediated by plant assemblages. Our results show that the progressive buildup of communities generates an interaction between diversity resistance and priority effects that eventually determines community diversity, unless species sorting mediated by environmental filtering supersedes the effect of biotic resistance. Therefore, disentangling the mechanisms underlying biotic resistance contributes to understand how species diversity is ultimately determined.


Biotic resistance Immigration Species diversity Macrophytes Zooplankton 

Supplementary material

442_2016_3715_MOESM1_ESM.docx (386 kb)
Supplementary material 1 (DOCX 386 kb)
442_2016_3715_MOESM2_ESM.xlsx (52 kb)
Supplementary material 2 (XLSX 52 kb)
442_2016_3715_MOESM3_ESM.docx (159 kb)
Supplementary material 3 (DOCX 159 kb)


  1. Allen MR, VanDyke JN, Cáceres CE (2011) Metacommunity assembly and sorting in newly formed lake communities. Ecology 92:269–275. doi:10.1890/10-0522.1 CrossRefPubMedGoogle Scholar
  2. Badosa A, Frisch D, Arechederra A, Serrano L, Green A (2010) Recovery of zooplankton diversity in a restored Mediterranean temporary marsh in Doñana National Park (SW Spain). Hydrobiologia 654:67–82. doi:10.1007/s10750-010-0370-0 CrossRefGoogle Scholar
  3. Beisner B, Hovius J, Hayward A, Kolasa J, Romanuk T (2006) Environmental productivity and biodiversity effects on invertebrate community invasibility. Biol Invasions 8:655–664. doi:10.1007/s10530-005-2061-8 CrossRefGoogle Scholar
  4. Berlow EL (1997) From canalization to contingency: historical effects in a successional rocky intertidal community. Ecol Monogr 67:435–460. doi:10.1890/0012-9615(1997)067[0435:fctche]2.0.co;2Google Scholar
  5. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.2307/27650800 CrossRefPubMedGoogle Scholar
  6. Capers RS, Selsky R, Bugbee GJ (2010) The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwat Biol 55:952–966. doi:10.1111/j.1365-2427.2009.02328.x CrossRefGoogle Scholar
  7. Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci USA 87:9610–9614CrossRefPubMedPubMedCentralGoogle Scholar
  8. Case TJ (1991) Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol J Linn Soc 42:239–266CrossRefGoogle Scholar
  9. Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498. doi:10.1007/s00442-003-1311-7 CrossRefPubMedGoogle Scholar
  10. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434. doi:10.1073/pnas.0704350104 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:art24CrossRefGoogle Scholar
  12. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Phil Trans R Soc B 366:2351–2363. doi:10.1098/rstb.2011.0063 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Davidson TA et al (2011) The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia 676:299–315. doi:10.1007/s10750-011-0851-9 CrossRefGoogle Scholar
  14. Davis MA (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704. doi:10.1111/j.2005.0906-7590.04205.x CrossRefGoogle Scholar
  15. De Meester L et al (2006) Biodiversity in European shallow lakes: a multilevel-multifactorial field study. In: Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) Wetlands: functioning, biodiversity conservation, and restoration, vol 191. Springer, Berlin, pp 149–167CrossRefGoogle Scholar
  16. Declerck SAJ, Bakker ES, van Lith B, Kersbergen A, van Donk E (2011) Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic Appl Ecol 12:466–475. doi:10.1016/j.baae.2011.05.001 CrossRefGoogle Scholar
  17. Declerck S, Vanderstukken M, Pals A, Muylaert K, De Meester L (2007) Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88:2199–2210. doi:10.1890/07-0048.1 CrossRefPubMedGoogle Scholar
  18. Drake JA (1991) Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat 137:1–26. doi:10.2307/2462154 CrossRefGoogle Scholar
  19. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  20. Fargione JE, Tilman D (2005) Diversity decreases invasion via both sampling and complementarity effects. Ecol Lett 8:604–611. doi:10.1111/j.1461-0248.2005.00753.x CrossRefGoogle Scholar
  21. Fridley JD et al (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17. doi:10.1890/0012-9658(2007)88[3:tiprpa]2.0.co;2Google Scholar
  22. Frisch D, Cottenie K, Badosa A, Green AJ (2012) Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS One 7:e40205CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fukami T, Morin PJ (2003) Productivity-biodiversity relationships depend on the history of community assembly. Nature 424:423–426. doi:10.1038/nature01785 CrossRefPubMedGoogle Scholar
  24. Fukami T, Nakajima M (2011) Community assembly: alternative stable states or alternative transient states? Ecol Lett 14:973–984. doi:10.1111/j.1461-0248.2011.01663.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9:399–409. doi:10.1111/j.1461-0248.2006.00884.x CrossRefPubMedGoogle Scholar
  26. Hao B, Wu H, Shi Q, Liu G, Xing W (2013) Facilitation and competition among foundation species of submerged macrophytes threatened by severe eutrophication and implications for restoration. Ecol Eng 60:76–80. doi:10.1016/j.ecoleng.2013.07.067 CrossRefGoogle Scholar
  27. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshwat Biol 56:1703–1722. doi:10.1111/j.1365-2427.2011.02610.x CrossRefGoogle Scholar
  28. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342–343:151–164. doi:10.1023/a:1017046130329 CrossRefGoogle Scholar
  29. Jiang L, Brady L, Tan J (2011) Species diversity, invasion, and alternative community states in sequentially assembled communities. Am Nat 178:411–418. doi:10.1086/661242 CrossRefPubMedGoogle Scholar
  30. Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638CrossRefPubMedGoogle Scholar
  31. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.1890/0012-9615(1999)069[0001:dbratm]2.0.co;2Google Scholar
  32. Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  33. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi:10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  34. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26CrossRefGoogle Scholar
  35. Louette G, De Meester L (2007) Predation and priority effects in experimental zooplankton communities. Oikos 116:419–426. doi:10.1111/j.2006.0030-1299.15381.x CrossRefGoogle Scholar
  36. Louette G, De Meester L, Declerck S (2008) Assembly of zooplankton communities in newly created ponds. Freshwat Biol 53:2309–2320. doi:10.1111/j.1365-2427.2008.02052.x Google Scholar
  37. Louette G, Vander Elst M, De Meester L (2006) Establishment success in young cladoceran communities: an experimental test. Limnol Oceanogr 51:1021–1030. doi:10.4319/lo.2006.51.2.1021 CrossRefGoogle Scholar
  38. Mergeay J, De Meester L, Eggermont H, Verschuren D (2011) Priority effects and species sorting in a long paleoecological record of repeated community assembly through time. Ecology 92:2267–2275. doi:10.1890/10-1645.1 CrossRefPubMedGoogle Scholar
  39. Oksanen J et al (2013) Vegan: community ecology package. R package version 2.0-9. http://CRAN.R-project.org/package=vegan. Accessed 10 Mar 2015
  40. Pu Z, Jiang L (2015) Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. Oikos 124:1327–1336. doi:10.1111/oik.02079 CrossRefGoogle Scholar
  41. R Development Core Team (2014) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org. Accessed 10 Mar 2015
  42. Santamaría L, Green AJ, Díaz-Delgado R, Bravo MA, Castellanos EM (2005) La Finca de Caracoles: un nuevo laboratorio para la ciencia y la restauración de humedales. In: García-novo F, Marín C (eds) Doñana: agua y biosfera. Conferederación Hidrográfica del Guadalquivir, Ministerio de Medio AmbienteGoogle Scholar
  43. Scheffer M, Nes E (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466. doi:10.1007/s10750-007-0616-7 CrossRefGoogle Scholar
  44. Shurin JB, Amarasekare P, Chase JM, Holt RD, Hoopes MF, Leibold MA (2004) Alternative stable states and regional community structure. J Theor Biol 227:359–368. doi:10.1016/j.jtbi.2003.11.013 CrossRefPubMedGoogle Scholar
  45. Simpson GL (2009) Co-correspondence analysis ordination methods. R package version 0.2-0. http://cran.r-project.org/package=analogue. Accessed 10 Mar 2015
  46. Stegen JC et al (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. doi:10.1038/ismej.2013.93 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Symons CC, Arnott SE (2014) Timing is everything: priority effects alter community invasibility after disturbance. Ecol Evol 4:397–407. doi:10.1002/ece3.940 CrossRefPubMedPubMedCentralGoogle Scholar
  48. ter Braak CJF, Schaffers AP (2004) Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85:834–846. doi:10.1890/03-0021 CrossRefGoogle Scholar
  49. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci 101:10854–10861. doi:10.1073/pnas.0403458101 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Royal Soc B 281:20132637CrossRefGoogle Scholar
  51. Van Donk E, Van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274. doi:10.1016/S0304-3770(01)00205-4 CrossRefGoogle Scholar
  52. Vellend BM (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. doi:10.1086/652373 CrossRefPubMedGoogle Scholar
  53. Vellend M et al (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430. doi:10.1111/oik.01493 CrossRefGoogle Scholar
  54. Viana DS et al (2016) Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39:281–288. doi:10.1111/ecog.01231 CrossRefGoogle Scholar
  55. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992. doi:10.4319/lo.1994.39.8.1985 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Duarte S. Viana
    • 1
  • Bertha Cid
    • 2
  • Jordi Figuerola
    • 1
  • Luis Santamaría
    • 1
    • 2
  1. 1.Estación Biológica de Doñana (EBD-CSIC)SevillaSpain
  2. 2.Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB)MallorcaSpain

Personalised recommendations