Advertisement

Oecologia

, Volume 182, Issue 2, pp 547–557 | Cite as

Phylogenetic turnover along local environmental gradients in tropical forest communities

  • C. A. BaldeckEmail author
  • S. W. Kembel
  • K. E. Harms
  • J. B. Yavitt
  • R. John
  • B. L. Turner
  • S. Madawala
  • N. Gunatilleke
  • S. Gunatilleke
  • S. Bunyavejchewin
  • S. Kiratiprayoon
  • A. Yaacob
  • M. N. N. Supardi
  • R. Valencia
  • H. Navarrete
  • S. J. Davies
  • G. B. Chuyong
  • D. Kenfack
  • D. W. Thomas
  • J. W. Dalling
Community ecology – original research

Abstract

While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species’ habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24–50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0–10.3 % and 0.4–8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.

Keywords

Center for tropical forest science Distance-based redundancy analysis Phylogenetic beta diversity Phylogenetic community structure Phylomatic 

Notes

Acknowledgments

We thank the Center for Tropical Forest Science for their collection and organization of the tree census data used in this study. The BCI forest dynamics research project was made possible by National Science Foundation Grants to Stephen P. Hubbell: DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Small World Institute Fund. Funding for soils work was provided by the US National Science Foundation Grants DEB 0211004, DEB 0211115, DEB 0212284, DEB 0212818, and OISE 0314581, the soils initiative of the Smithsonian Tropical Research Institute, and a CTFS grant to cover collection and extraction of soils from Korup. We also thank editor Walter Carson and two anonymous reviewers for their thoughtful comments on the manuscript.

Author contribution statement

NG, SG, SB, SK, AY, MNNS, RV, SJD, GBC, DK, and DWT coordinated collection of tree census and topographic data, JWD, KEH, JBY, and RJ designed the soil sampling protocol, BLT, SM, SB, SK, AY, HN, GBC, collected soil data, RJ kriged the soil data, CAB and SWK designed the statistical analysis, CAB performed analysis and wrote the manuscript, and JWD, SWK, KEH and contributed substantially to revisions.

Supplementary material

442_2016_3686_MOESM1_ESM.doc (217 kb)
Supplementary material 1 (DOC 217 kb)

References

  1. Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61. doi:10.1890/0012-9658(2006)87[50:NEAART]2.0.CO;2CrossRefPubMedGoogle Scholar
  2. Anacker BL, Harrison SP (2012) Historical and ecological controls on phylogenetic diversity in Californian plant communities. Am Nat 180:257–269. doi: 10.1086/666650 CrossRefPubMedGoogle Scholar
  3. Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H et al (2013a) Soil resources and topography shape local tree community structure in tropical forests. Proc R Soc B: Biol Sci. doi: 10.1098/rspb.2012.2532 Google Scholar
  4. Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, Chuyong GB et al (2013b) A taxonomic comparison of local habitat niches of tropical trees. Oecologia 173:1491–1498. doi: 10.1007/s00442-013-2709-5 CrossRefPubMedGoogle Scholar
  5. Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C, Dunning LT, Gonzalez M-A et al (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100:690–701. doi: 10.1111/j.1365-2745.2012.01966.x CrossRefGoogle Scholar
  6. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi: 10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  7. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi: 10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  8. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci 105:11505–11511. doi: 10.1073/pnas.0801920105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci 108:5302–5307. doi: 10.1073/pnas.1013003108 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian Oak communities. Am Nat 163:823–843. doi: 10.1086/386375 CrossRefPubMedGoogle Scholar
  11. Chazdon RL, Careaga S, Webb C, Vargas O (2003) Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecol Monogr 73:331–348. doi: 10.1890/02-4037 CrossRefGoogle Scholar
  12. Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS (2011) Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecol 212:1363–1374. doi: 10.1007/s11258-011-9912-4 CrossRefGoogle Scholar
  13. Davies SJ, Tan S, LaFrankie JV, Potts MD (2005) Soil-related floristic variation in a hyperdiverse dipterocarp forest. In: Roubik DW, Sakai S, Karim AAH (eds) Pollination ecology and the rain forest, ecological studies. Springer, New York, pp. 22–34Google Scholar
  14. De Cáceres M, Legendre P, Valencia R, Cao M, Chang L-W, Chuyong G, Condit R et al (2012) The variation of tree beta diversity across a global network of forest plots. Glob Ecol Biogeogr 21:1191–1202. doi: 10.1111/j.1466-8238.2012.00770.x CrossRefGoogle Scholar
  15. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015 CrossRefGoogle Scholar
  16. Dray S, Legendre P, Blanchet G (2009) packfor: forward selection with permutation (canoco p.46)Google Scholar
  17. Faith DP, Lozupone CA, Nipperess D, Knight R (2009) The cladistic basis for the phylogenetic diversity (PD) measure links evolutionary features to environmental gradients and supports broad applications of microbial ecology’s “phylogenetic beta diversity” framework. Int J Mol Sci 10:4723–4741. doi: 10.3390/ijms10114723 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552–565. doi: 10.1111/j.1600-0587.2010.06548.x CrossRefGoogle Scholar
  19. Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11:1265–1277. doi: 10.1111/j.1461-0248.2008.01256.x CrossRefPubMedGoogle Scholar
  20. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145. doi: 10.1111/j.1469-185X.1977.tb01347.x CrossRefGoogle Scholar
  21. Gunatilleke CVS, Gunatilleke IAUN, Esufali S, Harms KE, Ashton PMS, Burslem DFRP, Ashton PS (2006) Species–habitat associations in a Sri Lankan dipterocarp forest. J Trop Ecol 22:371. doi: 10.1017/S0266467406003282 CrossRefGoogle Scholar
  22. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959. doi: 10.1111/j.1365-2745.2001.00615.x CrossRefGoogle Scholar
  23. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP et al (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci 104:864–869. doi: 10.1073/pnas.0604666104 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:S86–S99. doi:10.1890/0012-9658(2006)87[86:TPSOAN]2.0.CO;2CrossRefPubMedGoogle Scholar
  25. Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422. doi: 10.1890/09-1672.1 CrossRefGoogle Scholar
  26. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2CrossRefGoogle Scholar
  27. Legendre P, Mi X, Ren H, Ma K, Yu M, Sun I-F, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674. doi: 10.1890/07-1880.1 CrossRefPubMedGoogle Scholar
  28. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003. doi: 10.1111/j.1461-0248.2008.01229.x CrossRefPubMedGoogle Scholar
  29. Losos E, Leigh EG (2004) tropical forest diversity and dynamism. University of Chicago Press, ChicagoGoogle Scholar
  30. Økland RH (1999) On the variation explained by ordination and constrained ordination axes. J Veg Sci 10:131–136. doi: 10.2307/3237168 CrossRefGoogle Scholar
  31. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P et al (2011) vegan: Community ecology packageGoogle Scholar
  32. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2CrossRefPubMedGoogle Scholar
  33. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. doi: 10.1126/science.285.5431.1265 CrossRefPubMedGoogle Scholar
  34. Prinzing A (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Society of London. Ser B: Biol Sci 268:2383–2389 doi:  10.1098/rspb.2001.1801
  35. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  36. Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhyā: Indian J Stat, Ser A (1961–2002) 26:329–358. doi:  10.2307/25049339
  37. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi: 10.1046/j.1461-0248.2003.00554.x CrossRefGoogle Scholar
  38. Ricotta C, La Sorte FA, Pyšek P, Rapson GL, Celesti-Grapow L, Thompson K (2012) Phylogenetic beta diversity of native and alien species in European urban floras. Glob Ecol Biogeogr 21:751–759. doi: 10.1111/j.1466-8238.2011.00715.x CrossRefGoogle Scholar
  39. Swenson NG (2011) Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS One 6:e21264. doi: 10.1371/journal.pone.0021264 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88:1770–1780. doi: 10.1890/06-1499.1 CrossRefPubMedGoogle Scholar
  41. Valencia R, Foster RB, Villa G, Condit R, Svenning J-C, Hernández C, Romoleroux K et al (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229. doi: 10.1111/j.0022-0477.2004.00876.x CrossRefGoogle Scholar
  42. Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14:782–787. doi: 10.1111/j.1461-0248.2011.01644.x CrossRefPubMedGoogle Scholar
  43. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. doi: 10.1086/303378 CrossRefPubMedGoogle Scholar
  44. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. doi: 10.1111/j.1471-8286.2004.00829.x CrossRefGoogle Scholar
  45. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. doi: 10.1093/bioinformatics/btn358 CrossRefPubMedGoogle Scholar
  46. Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644. doi: 10.1016/j.tree.2004.09.011 CrossRefPubMedGoogle Scholar
  47. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431 CrossRefGoogle Scholar
  48. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond. Ser B: Biol Sci 268:2211–2220. doi:  10.1098/rspb.2001.1782 CrossRefGoogle Scholar
  49. Zhang J-L, Swenson NG, Chen S-B, Liu X-J, Li Z-S, Huang J-H, Mi X-C et al (2013) Phylogenetic beta diversity in tropical forests: implications for the roles of geographical and environmental distance. J Syst Evol 51:71–85. doi: 10.1111/j.1759-6831.2012.00220.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. A. Baldeck
    • 1
    • 2
    Email author
  • S. W. Kembel
    • 3
  • K. E. Harms
    • 4
  • J. B. Yavitt
    • 5
  • R. John
    • 6
  • B. L. Turner
    • 7
  • S. Madawala
    • 8
  • N. Gunatilleke
    • 8
  • S. Gunatilleke
    • 8
  • S. Bunyavejchewin
    • 9
  • S. Kiratiprayoon
    • 10
  • A. Yaacob
    • 11
  • M. N. N. Supardi
    • 12
  • R. Valencia
    • 13
  • H. Navarrete
    • 13
  • S. J. Davies
    • 7
    • 14
  • G. B. Chuyong
    • 15
  • D. Kenfack
    • 14
  • D. W. Thomas
    • 16
  • J. W. Dalling
    • 2
    • 7
  1. 1.Program in Ecology, Evolution, and Conservation BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  3. 3.Département des sciences biologiquesUniversité du Québec à MontréalMontréalCanada
  4. 4.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  5. 5.Department of Natural Resources, 16 Fernow HallCornell UniversityIthacaUSA
  6. 6.Indian Institute of Science Education and ResearchNadiaIndia
  7. 7.Smithsonian Tropical Research InstituteAnconRepublic of Panama
  8. 8.Department of Botany, Faculty of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  9. 9.National Parks, Wildlife, and Plant Conservation DepartmentBangkokThailand
  10. 10.Faculty of Science and TechnologyThammasat University (Rangsit)PatumtaniThailand
  11. 11.Faculty of Plantation and AgrotechnologyUniversity Technology MARAShah AlamMalaysia
  12. 12.Forest Environment DivisionForest Research Institute MalaysiaKepongMalaysia
  13. 13.Laboratorio de Ecología de Plantas y Herbario QCA, Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
  14. 14.Center for Tropical Forest Science, Arnold Arboretum Asia ProgramHarvard UniversityCambridgeUSA
  15. 15.Department of Plant and Animal SciencesUniversity of BueaBueaRepublic of Cameroon
  16. 16.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA

Personalised recommendations