, Volume 182, Issue 2, pp 559–571 | Cite as

Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition

  • N. De MeesterEmail author
  • R. Gingold
  • A. Rigaux
  • S. Derycke
  • T. Moens
Ecosystem ecology – original research


Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity–ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.


Biodiversity–ecosystem functioning link Competition Functional differences Litoditis marina Marine nematodes 



Funding for this research was obtained from the Flemish Fund for Scientific Research (FWO) through project G038715 N, and from Ghent University through projects 011060002 and 01GA1911 W. Annick Van Kenhove is acknowledged for help with the set-up and sampling of the experiments. The authors would also like to thank Charlotte Heynssens, Bhabananda Biswas and Tara Grosemans for help with the qPCR analysis.

Data accessibility

All data of the experiment will be available after publication in the Integrated Marine Information System (IMIS) database (VLIZ):

Author contribution statement

NDM, RG, TM and SDR conceived and designed the experiments. NDM, AR, RG, TM and SDR performed the experiments, NDM analyzed the data. NDM wrote the manuscript; other authors provided editorial advice.

Supplementary material

442_2016_3677_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)
442_2016_3677_MOESM2_ESM.docx (181 kb)
Supplementary material 2 (DOCX 180 kb)


  1. Abrams BI, Mitchell MJ (1980) Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos 35:404–410CrossRefGoogle Scholar
  2. Akaike H (1981) Likelihood of a model and information criteria. Journal of econometrics 16:3–14CrossRefGoogle Scholar
  3. Alkemade R, Wielemaker A, De Jong S, Sandee AJJ (1992) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica detritus. Mar Ecol Prog Ser 90:149–155CrossRefGoogle Scholar
  4. Alkemade R, Wielemaker A, Hemminga MA (1993) Correlation between nematode abundance and decomposition rate of Spartina anglica leaves. Mar Ecol Prog Ser 99:293–300CrossRefGoogle Scholar
  5. Al-Naimi FA, Garrett KA, Bockus WW (2005) Competition, facilitation, and niche differentiation in two foliar pathogens. Oecologia 143:449–457CrossRefPubMedGoogle Scholar
  6. Amarasekare P, Nisbet RM (2001) Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am Nat 158:572–584CrossRefPubMedGoogle Scholar
  7. Amato A, Kooistra WHCF, Ghiron JHL, Mann DG, Pröschold T, Montresor M (2007) Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158:193–207CrossRefPubMedGoogle Scholar
  8. Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. doi: 10.1038/415426a CrossRefPubMedGoogle Scholar
  9. Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. Microbial enzymes in aquatic environments. Springer, New York, pp 29–59Google Scholar
  10. Costanza R, Fisher B, Mulder K, Liu S, Christopher T (2007) Biodiversity and ecosystem services: a multi-scale empirical study of the relationship between species richness and net primary production. Ecol Econ 61:478–491CrossRefGoogle Scholar
  11. Cothran RD, Noyes P, Relyea RA (2015) An empirical test of stable species coexistence in an amphipod species complex. Oecologia 178:1–13CrossRefGoogle Scholar
  12. Covich AP et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775CrossRefGoogle Scholar
  13. Danovaro R, Manini E, Fabiano M (2002) Exoenzymatic activity and organic matter composition in sediments of the Northern Adriatic Sea: response to a river plume. Microb Ecol 44:235–251CrossRefPubMedGoogle Scholar
  14. Danovaro R et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8CrossRefPubMedGoogle Scholar
  15. De Meester N, Derycke S, Bonte D, Moens T (2011) Salinity effects on the coexistence of cryptic species: a case study on marine nematodes. Mar Biol 158:2717–2726. doi: 10.1007/s00227-011-1769-5 CrossRefGoogle Scholar
  16. De Meester N, Derycke S, Moens T (2012) Differences in time until dispersal between cryptic species of a marine nematode species complex. PLoS ONE 7:e42674CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Meester N, Derycke S, Rigaux A, Moens T (2015a) Active dispersal is differentially affected by inter-and intraspecific competition in closely related nematode species. Oikos 124:561–570CrossRefGoogle Scholar
  18. De Meester N, Derycke S, Rigaux A, Moens T (2015b) Temperature and salinity induce differential responses in life histories of cryptic nematode species. J Exp Mar Biol Ecol 472:54–62CrossRefGoogle Scholar
  19. De Meester N, dos Santos GAP, Rigaux A, Valdes Y, Derycke S, Moens T (2015c) Daily temperature fluctuations alter interactions between closely related species of marine nematodes. PLoS ONE 10:e0131625CrossRefPubMedPubMedCentralGoogle Scholar
  20. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2003) Influence of bacterivorous nematodes on the decomposition of cordgrass. J Exp Mar Biol Ecol 296:227–242CrossRefGoogle Scholar
  21. De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744CrossRefPubMedGoogle Scholar
  22. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2006) Role of nematodes in decomposition processes: does within-trophic group diversity matter? Mar Ecol Prog Ser 321:157–166CrossRefGoogle Scholar
  23. Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103CrossRefGoogle Scholar
  24. Derycke S et al (2006) Seasonal dynamics of population genetic structure in cryptic taxa of the Pellioditis marina complex (Nematoda: Rhabditida). Genetica 128:307–321. doi: 10.1007/s10709-006-6944-0 CrossRefPubMedGoogle Scholar
  25. Derycke S, Fonseca G, Vierstraete A, Vanfleteren J, Vincx M, Moens T (2008a) Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zool J Linnean Soc 152:1–15. doi: 10.1111/j.1096-3642.2007.00365.x CrossRefGoogle Scholar
  26. Derycke S, Remerie T, Backeljau T, Vierstraete A, Vanfleteren J, Vincx M (2008b) Phylogeography of the Rhabditis (Pellioditis) marina species complex: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Mol Ecol 17:3306–3322. doi: 10.1111/j.1365-294X.2008.03846.x CrossRefPubMedGoogle Scholar
  27. Derycke S, Sheibani Tezerji R, Rigaux A, Moens T (2012) Investigating the ecology and evolution of cryptic marine nematode species through quantitative real time PCR of the ribosomal ITS region. Mol Ecol Resourc 12:607–619CrossRefGoogle Scholar
  28. Derycke S, Backeljau T, Moens T (2013) Dispersal and gene flow in free-living marine nematodes. Frontiers in Zoology 10:1CrossRefPubMedPubMedCentralGoogle Scholar
  29. Derycke S et al (2016) Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol Ecol. doi: 10.1111/mec.13597 PubMedGoogle Scholar
  30. Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:1300–1305CrossRefGoogle Scholar
  31. Ehrlich PR, Ehrlich AH (1981) Extinction: the causes and consequences of the disappearance of species. Random House, New YorkGoogle Scholar
  32. Ettema CH (1998) Soil nematode diversity: species coexistence and ecosystem function. J Nematol 30:159–169PubMedPubMedCentralGoogle Scholar
  33. Ferris H, Venette RC, Van Der Meulen HR, Lau SS (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203:159–171CrossRefGoogle Scholar
  34. Findlay S, Tenore K (1982) Nitrogen source for a detritivore: detritus substrate versus associated microbes. Science 218:371–373CrossRefPubMedGoogle Scholar
  35. Finlay BJ, Maberly SC, Cooper JI (1997) Microbial diversity and ecosystem function. Oikos 80:209–213CrossRefGoogle Scholar
  36. Fišer Ž, Altermatt F, Zakšek V, Knapič T, Fišer C (2015) Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four Niphargus species. PLoS ONE 10:e0134384CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fonseca G, Derycke S, Moens T (2008) Integrative taxonomy in two free-living nematode species complexes. Biol J Linn Soc 94:737–753. doi: 10.1111/j.1095-8312.2008.01015.x CrossRefGoogle Scholar
  38. Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosyst Environ 24:195–217CrossRefGoogle Scholar
  39. Gerhardt HC (2005) Acoustic spectral preferences in two cryptic species of grey treefrogs: implications for mate choice and sensory mechanisms. Anim Behav 70:39–48CrossRefGoogle Scholar
  40. Grosemans T, Morris K, Thomas WK, Rigaux A, Moens T, Derycke S (2016) Mitogenomics reveals high synteny and long evolutionary histories of sympatric cryptic nematode species. Ecol Evol Early View. doi: 10.1002/ece3.1975 Google Scholar
  41. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, New JerseyGoogle Scholar
  42. Lawton JH, Brown VK (1994) Redundancy in ecosystems. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin HeidelbergGoogle Scholar
  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  44. Loreau M (2004) Does functional redundancy exist? Oikos 104:606–611CrossRefGoogle Scholar
  45. Loreau M et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808CrossRefPubMedGoogle Scholar
  46. Mamilov AS, Byzov BA, Pokarzhevskii AD, Zvyagintsev DG (2000) Regulation of the biomass and activity of soil microorganisms by microfauna. Microbiology 69:612–621CrossRefGoogle Scholar
  47. Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307CrossRefPubMedGoogle Scholar
  48. Mayer F, Von Helversen O (2001) Sympatric distribution of two cryptic bat species across Europe. Biol J Linn Soc 74:365–374CrossRefGoogle Scholar
  49. Meyer-Reil L-A (1987) Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl Environ Microbiol 53:1748–1755PubMedPubMedCentralGoogle Scholar
  50. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227CrossRefGoogle Scholar
  51. Moens T, Vincx M (1998) On the cultivation of free-living marine and estuarine nematodes. Helgol Mar Res 52:115–139. doi: 10.1007/BF02908742 Google Scholar
  52. Moens T, Yeates G, De Ley P (2004) Use of carbon and energy sources by nematodes. In: Proceedings of the Fourth International Congress of Nematology, 8–13 June 2002, Tenerife, Spain, pp 529–545Google Scholar
  53. Moens T et al (2005) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83CrossRefGoogle Scholar
  54. Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33:161–168PubMedPubMedCentralGoogle Scholar
  55. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen, MJ, Suggests M (2007) The vegan package. Community ecology package 10Google Scholar
  56. Ortells R, Gómez A, Serra M (2003) Coexistence of cryptic rotifer species: ecological and genetic characterisation of Brachionus plicatilis. Freshw Biol 48:2194–2202. doi: 10.1046/j.1365-2427.2003.01159.x CrossRefGoogle Scholar
  57. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pinto JD, Oatman ER, Platner GR (1986) Trichogramma pretiosum and a new cryptic species occurring sympatrically in Southwestern North America (Hymenoptera: Trichogrammatidae). Ann Entomol Soc Am 79:1019–1028CrossRefGoogle Scholar
  59. Postma-Blaauw MB, De Vries FT, De Goede RGM, Bloem J, Faber JH, Brussaard L (2005) Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142:428–439CrossRefPubMedGoogle Scholar
  60. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  61. Riemann F, Schrage M (1978) The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34:75–88CrossRefGoogle Scholar
  62. Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180CrossRefPubMedGoogle Scholar
  63. Sudhaus W (2011) Phylogenetic systematisation and catalogue of paraphyletic “Rhabditidae” (Secernentea, Nematoda). J Nematode Morphol Syst 14:113–178Google Scholar
  64. Sudhaus W, Kiontke K (2007) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group. Zootaxa 1456:45–62Google Scholar
  65. Suits DB (1957) Use of dummy variables in regression equations. JASA 52:548–551CrossRefGoogle Scholar
  66. Tilman D (1976) Ecological competition between algae: experimental confirmation of resource-based competition theory. Science 192:463–465CrossRefGoogle Scholar
  67. Trewick SA (1998) Sympatric cryptic species in New Zealand Onychophora. Biol J Linn Soc 63:307–329. doi: 10.1006/bijl.1997.0197 CrossRefGoogle Scholar
  68. Urban-Malinga B, Gheskiere T, Degraer S, Derycke S, Opalinski K, Moens T (2008) Gradients in biodiversity and macroalgal wrack decomposition rate across a macrotidal, ultradissipative sandy beach. Mar Biol 155:79–90CrossRefGoogle Scholar
  69. Vafeiadou A-M, Materatski P, Adão H, De Troch M, Moens T (2014) Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11:4001–4014CrossRefGoogle Scholar
  70. Walker MA (1992) Redundancy in collaborative dialogue. In: Proceedings of the 14th Conference on Computational Linguistics vol 1, pp 345–351Google Scholar
  71. Wang K-H, McSorley R, Marshall AJ, Gallaher RN (2004) Nematode community changes associated with decomposition of Crotalaria juncea amendment in litterbags. Appl Soil Ecol 27:31–45CrossRefGoogle Scholar
  72. Wellborn G, Cothran R (2007) Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk. Oecologia 154:175–183. doi: 10.1007/s00442-007-0816-x CrossRefPubMedGoogle Scholar
  73. Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:221–227CrossRefGoogle Scholar
  74. Worm B et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790CrossRefPubMedGoogle Scholar
  75. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96:1463–1468CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yeates GW, Coleman DC (1982) Nematodes in decomposition. In: Freckman DW (ed) Nematodes in soil ecosystems. Univeristy of Texas Press, Austin, pp 55–80Google Scholar
  77. Yoder M et al (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376CrossRefGoogle Scholar
  78. Zhang DY, Lin K, Hanski I (2004) Coexistence of cryptic species. Ecol Lett 7:165–169. doi: 10.1111/j.1461-0248.2004.00569.x CrossRefGoogle Scholar
  79. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. De Meester
    • 1
    • 2
    Email author
  • R. Gingold
    • 1
    • 3
    • 5
  • A. Rigaux
    • 1
    • 2
  • S. Derycke
    • 1
    • 4
  • T. Moens
    • 1
  1. 1.Marine Biology Unit, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Center for Molecular Phylogeny and EvolutionGhent UniversityGhentBelgium
  3. 3.Department of Biological OceanographyCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  4. 4.OD Taxonomy and PhylogenyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  5. 5.SWEEP and More CompanyKielGermany

Personalised recommendations