Oecologia

, Volume 182, Issue 2, pp 429–442 | Cite as

Specialized morphology corresponds to a generalist diet: linking form and function in smashing mantis shrimp crustaceans

  • Maya S. deVries
  • Brian C. Stock
  • John H. Christy
  • Gregory R. Goldsmith
  • Todd E. Dawson
Behavioral ecology –original research

Abstract

Many animals are considered to be specialists because they have feeding structures that are fine-tuned for consuming specific prey. For example, “smasher” mantis shrimp have highly specialized predatory appendages that generate forceful strikes to break apart hard-shelled prey. Anecdotal observations suggest, however, that the diet of smashers may include soft-bodied prey as well. Our goal was to examine the diet breadth of the smasher mantis shrimp, Neogonodactylus bredini, to determine whether it has a narrow diet of hard-shelled prey. We combined studies of prey abundance, feeding behavior, and stable isotope analyses of diet in both seagrass and coral rubble to determine if N. bredini’s diet was consistent across different habitat types. The abundances of hard-shelled and soft-bodied prey varied between habitats. In feeding experiments, N. bredini consumed both prey types. N. bredini consumed a range of different prey in the field as well and, unexpectedly, the stable isotope analysis demonstrated that soft-bodied prey comprised a large proportion (29–53 %) of the diet in both habitats. Using a Bayesian mixing model framework (MixSIAR), we found that this result held even when we used uninformative, or generalist, priors and informative priors reflecting a specialist diet on hard-shelled prey and prey abundances in the field. Thus, contrary to expectation, the specialized feeding morphology of N. bredini corresponds to a broad diet of both hard-shelled and soft-bodied prey. Using multiple lines of study to describe the natural diets of other presumed specialists may demonstrate that specialized morphology often broadens rather than narrows diet breadth.

Keywords

Stomatopoda Stable isotopes Bayesian mixing model Raptorial appendage Feeding ecology 

Supplementary material

442_2016_3667_MOESM1_ESM.pdf (8.2 mb)
Supplementary material 1 (PDF 8398 kb)

References

  1. Ahyong ST (1997) Phylogenetic analysis of the Stomatopoda (Malacostraca). J Crustac Biol 17:695–715CrossRefGoogle Scholar
  2. Ahyong ST (2001) Revision of the Australian stomatopod Crustacea. Rec Aust Mus Suppl 26:1–326CrossRefGoogle Scholar
  3. Ahyong ST, Harling C (2000) The phylogeny of the stomatopod Crustacea. Aust J Zool 48:607–642CrossRefGoogle Scholar
  4. Ahyong S, Jarman S (2009) Stomatopod interrelationships: preliminary results based on analysis of three molecular loci. Arthropod Syst Phylogeny 67:91–98Google Scholar
  5. Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi:10.1111/j.1461-0248.2011.01662.x CrossRefPubMedGoogle Scholar
  6. Barnett A, Bellwood DR, Hoey AS (2006) Trophic ecomorphology of cardinalfish. Mar Ecol Prog Ser 322:249–257CrossRefGoogle Scholar
  7. Bearhop S, Adams CE, Waldrons S et al (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  8. Bellwood DR, Wainwright PC, Fulton CJ, Hoey AS (2006) Functional versatility supports coral reef biodiversity. Proc R Soc B-Biological Sci 273:101–107CrossRefGoogle Scholar
  9. Binning SA, Chapman LJ, Cosandey-Godin A (2009) Specialized morphology for a generalist diet: evidence for Liem’s paradox in a cichlid fish. J Fish Biol 75:1683–1699. doi:10.1111/j.1095-8649.2009.02421.x CrossRefPubMedGoogle Scholar
  10. Blackwell PRY, O’Hara PD, Christy JH (1998) Prey availability and selective foraging in shorebirds. Anim Behav 55:1659–1667CrossRefGoogle Scholar
  11. Blanco MM, Patek SN (2014) Muscle trade-offs in a power-amplified prey capture system. Evolution 68:1399–1414. doi:10.1111/evo.12365 CrossRefPubMedGoogle Scholar
  12. Bolnick DI, Yang LH, Fordyce JA et al (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941CrossRefGoogle Scholar
  13. Bolnick DI, Svanbäck R, Fordyce JA et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi:10.1086/343878 CrossRefPubMedGoogle Scholar
  14. Brandl SJ, Robbins WD, Bellwood DR (2015) Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use. Proc R Soc B Biol Sci 282:1–10CrossRefGoogle Scholar
  15. Burrows M (1969) The mechanics and neural control of the prey capture strike in the mantid shrimps Squilla and Hemisquilla. Z Vgl Physiol 62:361–381CrossRefGoogle Scholar
  16. Caldwell RL, Childress ML (1989) Prey selection and processing in a stomatopod crustacean.  In: Hughes RN (ed) Behavioural mechanisms of food selection, vol. G 20 NATO ASI Series. Springer, Heidelberg, Germany, pp 143–164Google Scholar
  17. Caldwell RL, Dingle H (1975) Ecology and evolution of agonistic behavior in Stomatopods. Naturwissenschaften 62:214–222CrossRefGoogle Scholar
  18. Caldwell RL, Dingle H (1976) Stomatopods. Sci Am 234:80–89CrossRefGoogle Scholar
  19. Caldwell RL, Steger R (1987) Effects of May, 1986 oil spill on gonodactylid stomatopods near Galeta Point. In: Jackson JBC, Cubit JD, Keller BD et al (eds) Short-term assessment of an oil spill at Bahia Las Minas, Panama. Smithsonian Tropical Research Institute, Panama City, pp 113–128Google Scholar
  20. Caldwell RL, Roderick GK, Shuster SM (1989) Studies of predation by Gonodactylus bredini. In: Ferrero EA (ed) Biology of Stomatopods. Mucchi, Modena, pp 117–131Google Scholar
  21. Chiaradia A, Forero MG, McInnes JC, Ramírez F (2014) Searching for the true diet of marine predators: incorporating Bayesian priors into stable isotope mixing models. PLoS ONE. doi:10.1371/journal.pone.0092665 Google Scholar
  22. Cubit JD, Windsor DM, Thompson RC, Burgett JM (1986) Water-level fluctuations, emersion regimes, and variations of echinoid populations on a Caribbean reef flat. Estuar Coast Shelf Sci 22:719–737. doi:10.1016/0272-7714(86)90095-8 CrossRefGoogle Scholar
  23. Dalerum F, Angerbjörn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658CrossRefPubMedGoogle Scholar
  24. Darwin C (1862) The various contrivances by which orchids are fertilised by insects. John Murray, LondonGoogle Scholar
  25. Dearing MD (1993) An alimentary specialization for herbivory in the tropical whiptail lizard Cnemidophorus murinus. J Herpetol 27:111–114. doi:10.2307/1564920 CrossRefGoogle Scholar
  26. deVries MS, Murphy EAK, Patek SN (2012) Strike mechanics of an ambush predator: the spearing mantis shrimp. J Exp Biol 215:4374–4384. doi:10.1242/jeb.075317 CrossRefPubMedGoogle Scholar
  27. deVries MS, Martínez del Rio C, Tunstall TS, Dawson TE (2015) Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans. PLoS One 10:e0122334. doi:10.1371/journal.pone.0122334 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dingle H, Caldwell RL (1978) Ecology and morphology of feeding and agonistic behavior in mudflat stomatopods (Squillidae). Biol Bull 155:134–149CrossRefGoogle Scholar
  29. Dominguez JH, Reaka ML (1988) Temporal activity patterns in reef-dwelling stomatopods: a test of alternative hypotheses. J Exp Mar Bio Ecol 117:47–69CrossRefGoogle Scholar
  30. Dumont ER (1999) The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae): an experimental study. J Zool 248:219–229. doi:10.1111/j.1469-7998.1999.tb01198.x CrossRefGoogle Scholar
  31. Eilertsen MH, Malaquias MAE (2013) Unique digestive system, trophic specialization, and diversification in the deep-sea gastropod genus Scaphander. Biol J Linn Soc 109:512–525. doi:10.1111/bij.12069 CrossRefGoogle Scholar
  32. Feranec RS (2007) Ecological generalization during adaptive radiation: evidence from Neogene mammals. Evol Ecol Res 9:555–557Google Scholar
  33. Ferry-Graham LA, Bolnick DI, Wainwright PC (2002) Using functional morphology to examine the ecology and evolution of specialization. Integr Comp Biol 42:265–277. doi:10.1093/icb/42.2.265 CrossRefPubMedGoogle Scholar
  34. Francis TB, Schindler DE, Holtgrieve GW et al (2011) Habitat structure determines resource use by zooplankton in temperate lakes. Ecol Lett 14:364–372. doi:10.1111/j.1461-0248.2011.01597.x CrossRefPubMedGoogle Scholar
  35. Franco-Trecu V, Drago M, Riet-Sapriza FG et al (2013) Bias in diet determination: incorporating traditional methods in Bayesian mixing models. PLoS One 8:1–8. doi:10.1371/journal.pone.0080019 CrossRefGoogle Scholar
  36. Fry B (2006) Stable Isotope Ecology. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  37. Fry B, Arnold C (1982) Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54:200–204CrossRefGoogle Scholar
  38. Full RJ, Caldwell RL, Chow SW (1989) Smashing energetics: prey selection and feeding efficiency of the stomatopod, Gonodactylus bredini. Ethology 81:134–147CrossRefGoogle Scholar
  39. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233CrossRefGoogle Scholar
  40. Gartner GEA, Greene HW (2008) Adaptation in the African egg-eating snake: a comparative approach to a classic study in evolutionary functional morphology. J Zool 275:368–374. doi:10.1111/j.1469-7998.2008.00448.x CrossRefGoogle Scholar
  41. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian Data Analysis, 2nd edn. Chapman and Hall, Boca RatonGoogle Scholar
  42. Gordon ERL, Weirauch C (2015) Efficient capture of natural history data reveals prey conservatism of cryptic termite assassins. Mol Phylogenet Evol 94:65–73. doi:10.1016/j.ympev.2015.08.015 CrossRefPubMedGoogle Scholar
  43. Grant PR (1986) Ecology and evolution of Darwin’s finches. Princeton University Press, PrincetonGoogle Scholar
  44. Grant BR, Grant PR (1993) Evolution of Darwin’s finches caused by a rare climatic event. Proc R Soc B Biol Sci 251:111–117. doi:10.1098/rspb.1993.0016 CrossRefGoogle Scholar
  45. Hegrenes S (2001) Diet-induced phenotypic plasticity of feeding morphology in the orangespotted sunfish, Lepomis humilis. Ecol Freshw Fish 10:35–42. doi:10.1034/j.1600-0633.2001.100105.x CrossRefGoogle Scholar
  46. Hori M (1993) Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260:216–219CrossRefPubMedGoogle Scholar
  47. Huang J, An J, Wu J, Williams PH (2015) Extreme food-plant specialisation in Megabombus bumblebees as a product of long tongues combined with short nesting seasons. PLoS One 10:1–15. doi:10.1371/journal.pone.0132358 Google Scholar
  48. Hulsey CD, De León FJG (2005) Cichlid jaw mechanics: linking morphology to feeding specialization. Funct Ecol 19:487–494CrossRefGoogle Scholar
  49. Kienle SS, Berta A (2015) The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae). J Anat 396–413. doi: 10.1111/joa.12410
  50. Konuma J, Nagata N, Sota T (2011) Factors determining the direction of ecological specialization in snail-feeding carabid beetles. Evolution 65:408–418. doi:10.1111/j.1558-5646.2010.01150.x CrossRefPubMedGoogle Scholar
  51. Lack D (1988) Darwin’s Finches. University of Cambridge, CambridgeGoogle Scholar
  52. Lee SY (1995) Cheliped size and structure: the evolution of a multifunctional decapod organ. J Exp Mar Bio Ecol 193:161–176CrossRefGoogle Scholar
  53. Liem KF (1980) Adaptive significance of intraspecific and interspecific differences in the feeding repertoires of cichlid fishes. Am Zool 20:295–314CrossRefGoogle Scholar
  54. Lim SSL, Yong AYP, Christy JH (2016) Ontogenetic changes in diet and related morphological adaptations in Ocypode gaudichaudii. Invertebr Biol 135(2):117–126CrossRefGoogle Scholar
  55. Martínez del Rio C, Sabat P, Anderson-Sprecher R, Gonzalez SP (2009) Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia 161:149–159. doi:10.1007/s00442-009-1357-2 CrossRefGoogle Scholar
  56. Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:10.1007/s00442-008-1052-8 CrossRefPubMedGoogle Scholar
  57. Mcgee MD, Borstein SR, Neches RY et al (2015) A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids. Science 350:1077–1079CrossRefPubMedGoogle Scholar
  58. Mehta RS (2009) Ecomorphology of the moray bite: relationship between dietary extremes and morphological diversity. Physiol Biochem Zool 82:90–103CrossRefPubMedGoogle Scholar
  59. Meyers JJ, Herrel A, Nishikawa KC (2006) Morphological correlates of ant eating in horned lizards (Phrynosoma). Biol J Linn Soc 89:13–24. doi:10.1111/j.1095-8312.2006.00654.x CrossRefGoogle Scholar
  60. Montaña CG, Winemiller KO (2013) Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biol J Linn Soc 109:146–164. doi:10.1111/bij.12021 CrossRefGoogle Scholar
  61. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480. doi:10.1111/j.1461-0248.2008.01163.x CrossRefPubMedGoogle Scholar
  62. Motta PJ (1988) Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Environ Biol Fishes 22:39–67. doi:10.1007/BF00000543 CrossRefGoogle Scholar
  63. Motta PJ, Clifton KB, Hernandez P, Eggold BT (1995) Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization. Environ Biol Fishes 44:37–60. doi:10.1007/BF00005906 CrossRefGoogle Scholar
  64. Newsome SD, Martínez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436CrossRefGoogle Scholar
  65. Newsome SD, Yeakel JD, Wheatley PV, Tinker MT (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mammal 93:329–341. doi:10.1644/11-MAMM-S-187.1 CrossRefGoogle Scholar
  66. Parnell A, Inger R, Bearhop S, Jackson A (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS Biol 5:e9672Google Scholar
  67. Parnell AC, Phillips DL, Bearhop S et al (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399. doi:10.1002/env.2221 Google Scholar
  68. Patek SN, Korff WL, Caldwell RL (2004) Deadly strike mechanism of a mantis shrimp. Nature 428:819–820CrossRefPubMedGoogle Scholar
  69. Patek SN, Nowroozi BN, Baio JE et al (2007) Linkage mechanics and power amplification of the mantis shrimp’s strike. J Exp Biol 210:3677–3688CrossRefPubMedGoogle Scholar
  70. Patek SN, Rosario MV, Taylor JRA (2013) Comparative spring mechanics in mantis shrimp. J Exp Biol 216:1317–1329CrossRefPubMedGoogle Scholar
  71. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefPubMedGoogle Scholar
  72. Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125CrossRefGoogle Scholar
  73. Phillips DL, Inger R, Bearhop S et al (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 835:823–835CrossRefGoogle Scholar
  74. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing. Vienna, Austria, pp 124–125Google Scholar
  75. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing 1:409Google Scholar
  76. Reaka ML (1975) Molting in stomatopod crustaceans. 1. Stages of molt cycle, setagenesis, and morphology. J Morphol 146:50–80CrossRefGoogle Scholar
  77. Rezac M, Pekar S, Lubin Y (2008) How oniscophagous spiders overcome woodlouse armour. J Zool 275:64–71. doi:10.1111/j.1469-7998.2007.00408.x CrossRefGoogle Scholar
  78. Rudman WB (1981) Further studies on the anatomy and ecology of opisthobranch molluscs feeding on the scleractinian coral Porites. Zool J Linn Soc 71:373–412. doi:10.1111/j.1096-3642.1981.tb01136.x CrossRefGoogle Scholar
  79. Sabat P, Maldonado K, Canals M, Martínez del Rio C (2006) Osmoregulation and adaptive radiation in the ovenbird genus Cinclodes (Passeriformes: Furnariidae). Funct Ecol 20:799–805CrossRefGoogle Scholar
  80. Saldaña-Vázquez RA, Ruiz-Sanchez E, Herrera-Alsina L, Schondube JE (2015) Digestive capacity predicts diet diversity in Neotropical frugivorous bats. J Anim Ecol 84:1396–1404. doi:10.1111/1365-2656.12383 CrossRefPubMedGoogle Scholar
  81. Sanderson SL (1990) Versatility and specialization in labrid fishes: ecomorphological implications. Oecologia 84:272–279. doi:10.1007/BF00318284 CrossRefGoogle Scholar
  82. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  83. Semmens B, Ward E, Moore J, Darimont C (2009) Quantifying inter- and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS One 4:6187CrossRefGoogle Scholar
  84. Stayton CT (2006) Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824–841CrossRefPubMedGoogle Scholar
  85. Stock BC, Semmens BX (2013) MixSIAR GUI user manual, version 3.1. doi:10.5281/zenodo.47719
  86. Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390CrossRefGoogle Scholar
  87. Ward EJ, Semmens BX, Schindler DE (2010) Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ Sci Technol 44:4645–4650. doi:10.1021/es100053v CrossRefPubMedGoogle Scholar
  88. Warner GF, Jones AR (1976) Leverage and muscle type in crab chelae (Crustacea: Brachyura). J Zool 180:57–68. doi:10.1111/j.1469-7998.1976.tb04663.x CrossRefGoogle Scholar
  89. Weaver JC, Milliron GW, Miserez A et al (2012) The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336:1275–1280. doi:10.1126/science.1218764 CrossRefPubMedGoogle Scholar
  90. Wilcox M, Rochette R (2015) Does claw morphology of the green crab Carcinus maenas vary in relation to its diet on rocky versus fine-sediment shores of southwest New Brunswick, Bay of Fundy, Canada? J Exp Mar Bio Ecol 465:121–129. doi:10.1016/j.jembe.2015.01.009 CrossRefGoogle Scholar
  91. Wyatt AS, Waite AM, Humphries S (2010) Variability in isotope discrimination factors in coral reef fishes: implications for diet and food web reconstruction. PLoS One 5:e13682CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yamada SB, Boulding EG (1998) Claw morphology, prey size selection and foraging effecincy in generalist and specalist shell-breaking crabs. J Exp Biol Mar Ecol 220:191–211CrossRefGoogle Scholar
  93. Yeakel JD, Novak M, Guimarães PR et al (2011) Merging resource availability with isotope mixing models: the role of neutral interaction assumptions. PLoS One 6:1–8. doi:10.1371/journal.pone.0022015 CrossRefGoogle Scholar
  94. Zack TI, Claverie T, Patek SN (2009) Elastic energy storage in the mantis shrimp’s fast predatory strike. J Exp Biol 212:4002–4009CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maya S. deVries
    • 1
    • 2
  • Brian C. Stock
    • 2
  • John H. Christy
    • 3
  • Gregory R. Goldsmith
    • 1
    • 4
  • Todd E. Dawson
    • 1
  1. 1.Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoUSA
  3. 3.Naos Marine LaboratoriesSmithsonian Tropical Research InstitutePanamáRepública de Panamá
  4. 4.Ecosystem Fluxes Group, Laboratory for Atmospheric ChemistryPaul Scherrer InstitutVilligenSwitzerland

Personalised recommendations