, Volume 182, Issue 1, pp 163–175 | Cite as

Mother knows the best mould: an essential role for non-wood dietary components in the life cycle of a saproxylic scarab beetle

  • Matti Landvik
  • Pekka Niemelä
  • Tomas Roslin
Population ecology – original research


Beetles living in tree hollows can feed on a wealth of substrates—e.g. the rotten wood surrounding the cavity, leaf humus falling into the hole, and larval frass accumulating in the cavity. In this paper, we examine the role of these main substrates in Finnish tree hollows in the female preference and larval growth of the hermit beetle Osmoderma barnabita. We rear larvae on diets consisting of wood material (as affected by brown-rot), leaf humus, and larval frass, in varying proportions. To pinpoint the effects of microbes, we contrast larval growth on sterilized versus unsterilized larval frass, and on pure mycelia of the cavity-creating fungus Laetiporus sulphureus. Finally, to relate larval performance to female preference, we examine female choice among the three main substrates used in the larval rearings. We found that the presence of one substrate modifies the influence of another, with larval growth and survival being highest on pure leaf humus. Microbes came with both positive and negative impacts on larval performance, as larvae grew quicker on unsterilized than on sterilized larval frass, but were also struck by higher mortality. On pure fungal mycelia, larvae neither grew nor survived. Female preference reflected larval performance, with leaf humus being preferred over other resources. Overall, our study suggests that organisms inhabiting tree holes may be dependent on subsidies entering the cavity from outside, and that ovipositing females may specifically respond to the presence of such subsidies. Thus, the quality of a microhabitat may depend on what enters it from outside.


Osmoderma Wood mould Ecosystem engineer Optimal oviposition Preference–performance hypothesis 



We thank Mikko Jokinen from the Environment Department of the City of Turku for the support and encouragement. We are also grateful to Marjo Anttila and Matti Yli-Rekola from the Turku University Botanical Garden for extending help, laboratory space, and access to devices, to Taisto Junger for help with the preparation of larval substrates, and to Bess Hardwick, Marjo Kilpinen and Marjut Wallner for ICP-OES analyses. Financial support by the Vuokko foundation, by the Oscar Öflund’s foundation, by Societas Entomologica Helsingforsiensis and by the Academy of Finland (Grant 138346 to TR) is gratefully acknowledged. Legal permissions for this project were granted by city of Turku and the Centre of Economic Development, Transport and the Environment with VARELY/919/07.01/2010, VARELY403/07.01/2011 and VARELY/52/07.01/2012.

Author contribution statement

ML formulated the idea. ML, TR and PN designed the experiments. ML performed the experiments. TR and ML analyzed the results. ML, TR and PN wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable national guidelines for the care and use of animals were followed.

Supplementary material

442_2016_3661_MOESM1_ESM.pdf (375 kb)
Supplementary material 1 (PDF 375 kb)


  1. Alexander K, Buche B, Dodelin B, Schlaghamersky J (2010) Osmoderma barnabita. The IUCN red list of threatened species 2010: e.T157901A5169119. Retrieved on 9th April 2016
  2. Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Piatella E, Trizzino M, Dutto M, Antonini G, De Biase A (2007) Updating the taxonomy and distribution of the European Osmoderma, and strategies for their conservation. Fragm Entomol 39:273–290. doi: 10.4081/fe.2007.124 CrossRefGoogle Scholar
  3. Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Trizzino M, Antonini G, De Biase A (2009) Data on molecular taxonomy and genetic diversification of the European Hermit beetles, a species complex of endangered insects (Coleoptera: Scarabaeidae, Cetoniinae, Osmoderma). J Zool Syst Evol Res 47:88–95. doi: 10.1111/j.1439-0469.2008.00475.x CrossRefGoogle Scholar
  4. Benrey B, Denno RF (1997) The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987–999Google Scholar
  5. Berdequé M, Reitz SR, Trumble JT (1998) Host plant selection and development in Spodoptera exigua: do mother and offspring know best? Entomol Exp Appl 89:57–64. doi: 10.1046/j.1570-7458.1998.00381.x CrossRefGoogle Scholar
  6. Bouget C, Brustel H, Nageleisen L-M (2005) Nomenclature des groupes écologiques d′insectes liés au bois: synthèse et mise au point sémantique. CR Biol 328:936–948. doi: 10.1016/j.crvi.2005.08.003 CrossRefGoogle Scholar
  7. Brunner A, Kimmins JP (2003) Nitrogen fixation in couarse woody debris of Thuja plicata and Tsuga heterophylla forests on northern Vancouver island. Can J For Res 33:1670–1682. doi: 10.1139/x03-085 CrossRefGoogle Scholar
  8. Buse J, Ranius T, Assmann T (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conserv Biol 22:329–337. doi: 10.1111/j.1523-1739.2007.00880.x CrossRefPubMedGoogle Scholar
  9. Carlsson S, Bergman KO, Jansson N, Ranius T, Milberg P (2016) Boxing for biodiversity: evaluation of an artificially created decaying wood habitat. Biodivers Conserv 25:393–405. doi: 10.1007/s10531-016-1057-2 CrossRefGoogle Scholar
  10. Carpaneto GM, Baviera C, Biscaccianti AB, Brandmayr P, Mazzei A, Mason F, Battistoni A, Teofili C, Rondinini C, Fattorini S, Audisio P (2015) A red list of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera). Fragm Entomol 47:53–126. doi: 10.4081/fe.2015.138 CrossRefGoogle Scholar
  11. Chandler JA, Morgan Lang J, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:1–18. doi: 10.1371/journal.pgen.1002272 CrossRefGoogle Scholar
  12. Chiari S, Carpaneto GM, Zauli A, Marini L, Ranius T (2012) Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience 19:299–307. doi: 10.2980/19-4-3505 CrossRefGoogle Scholar
  13. Chiari S, Zauli A, Audisio P, Carpaneto GM (2014) Interactions between larvae of the threatened saproxylic beetle Osmoderma eremita and other flower chafers in Mediterranean woodlands: implications for conservation. Insect Conserv Divers 7:462–469. doi: 10.1111/icad.12069 CrossRefGoogle Scholar
  14. Clancy KM, Price PW (1987) Rapid herbivore growth enhances enemy attack: sublethal plant defenses remain a paradox. Ecology 68:733–737CrossRefGoogle Scholar
  15. Clark KE, Hartley SE, Johnson SN (2011) Does mother know best? The preference-performance hypothesis and parent-offspring conflict in aboveground-belowground herbivore life cycles. Ecol Entomol 36:117–124. doi: 10.1111/j.1365-2311.2010.01248.x CrossRefGoogle Scholar
  16. Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff FA, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol 15:2431–2449. doi: 10.1111/j.1365-2486.2009.01916.x CrossRefGoogle Scholar
  17. Dajoz R (1966) Ecologie et biologie des coléoptères xylophages de la hêtraie. Vie Milieu Paris 17:525–736Google Scholar
  18. De Fine Licht HH, Biedermann PHW (2012) Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool 9:13. doi: 10.1186/1742-9994-9-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92. doi: 10.1146/annurev.ento.49.061802.123416 CrossRefPubMedGoogle Scholar
  20. Dubois GF (2009) Écologie des coléopterès saproxyliques: Biologie des populations et conservation dʼOsmoderma eremita (Coleoptera: Cetoniidae). PhD thesis, Université de Rennes 1, Rennes, FranceGoogle Scholar
  21. Dubois GF, Vignon V, Delettre YR, Rantier Y, Vernon P, Burel F (2009) Factors affecting the occurrence of the endangered saproxylic beetle Osmoderma eremita (Scopoli, 1763) (Coleoptera: Cetoniidae) in an agricultural landscape. Landsc Urban Plan 91:152–159. doi: 10.1016/j.landurbplan.2008.12.009 CrossRefGoogle Scholar
  22. Dubois GF, Le Gouar PJ, Delettre YR, Brustel H, Vernon P (2010) Sex-biased and body condition dependent dispersal capacity in the endangered saproxylic beetle Osmoderma eremita (Coleoptera: Cetoniidae). J Insect Conserv 14:679–687. doi: 10.1007/s10841-010-9296-0 CrossRefGoogle Scholar
  23. Estes AM, Hearn DJ, Snell-Rood EC, Feindler M, Feeser K, Abebe T, Dunning Hotopp JC, Moczek AP (2013) Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8:e79061. doi: 10.1371/journal.pone.0079061 CrossRefPubMedPubMedCentralGoogle Scholar
  24. European Commission (2007) Guidance document on the strict protection of animal species of Community interest under the Habitats Directive 92/43/EEC. Final versionGoogle Scholar
  25. Farrell BD, Sequeira AS, O´Mear BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027CrossRefPubMedGoogle Scholar
  26. Feeny PP (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects. recent advances in phytochemistry, vol 10. Plenum press, New York, pp 1–40Google Scholar
  27. Geib SM, Jiminez-Gasco MDM, Carlson JE, Tien M, Hoover K (2009) Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle. Environ Entomol 38:686–699. doi: 10.1603/022.038.0320 CrossRefPubMedGoogle Scholar
  28. Gough LA, Birkemoe T, Sverdrup-Thygeson A (2014) Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biol Conserv 180:75–83. doi: 10.1016/j.biocon.2014.09.034 CrossRefGoogle Scholar
  29. Gripenberg S, Morriën E, Cudmore A, Salminen J-P, Roslin T (2007) Resource selection by female moths in a heterogenous environment: what is a poor girl to do? J Anim Ecol 76:854–865. doi: 10.1111/j.1365-2656.2007.01261.x CrossRefPubMedGoogle Scholar
  30. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13:383–393. doi: 10.1111/j.1461-0248.2009.01433.x CrossRefPubMedGoogle Scholar
  31. Hassall M, Rushton SP (1985) The adaptive significance of coprophagous behavior in terrestrial isopod Porcellio scaber. Pedobiologia 28:169–175Google Scholar
  32. Hendrickson OQ (1991) Abundance and activity of N2-fixing bacteria in decaying wood. Can J For Res 21:1299–1304. doi: 10.1139/x91-183 CrossRefGoogle Scholar
  33. Hilszczański J, Jaworski T, Plewa R, Jansson N (2014) Surrogate tree cavities: boxes with artificial substrate can serve as temporary habitat for Osmoderma barnabita (Motsch.) (Coleoptera, Cetoniinae). J Insect Conserv 18:855–861. doi: 10.1007/s10841-014-9692-y CrossRefGoogle Scholar
  34. Jaenike J (1978) Optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356. doi: 10.1016/0040-5809(78)90012-6 CrossRefPubMedGoogle Scholar
  35. Janson EM, Stireman JO, Singer MS, Abbotet P (2008) Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012. doi: 10.1111/j.1558-5646.2008.00348.x CrossRefPubMedGoogle Scholar
  36. Jansson N, Larsson A, Milberg P, Ranius T (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908. doi: 10.1007/s10531-009-9687-2 CrossRefGoogle Scholar
  37. Jönsson N (2003) Situation and habitat preference of Hermit beetle, Osmoderma eremita, on the island Hallands Väderö. Master thesis, Department of Entomology, Swedish University of Agricultural Sciences, Uppsala, SwedenGoogle Scholar
  38. Jönsson N, Méndez M, Ranius T (2004) Nutrient richness of wood mould in tree hollows with the Scarabaeid beetle Osmoderma eremita. Anim Biodiv Conserv 27:79–82Google Scholar
  39. Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248. doi: 10.1006/bcon.2001.0938 CrossRefGoogle Scholar
  40. Landvik M, Wahlberg N, Roslin T (2013) The identity of the Finnish Osmoderma (Coleoptera: Scarabaeidae, Cetoniinae) population established by COI sequencing. Entomol Fennica 24:147–155Google Scholar
  41. Landvik M, Niemelä P, Roslin T (2016) Opportunistic habitat use by Osmoderma barnabita (Coleoptera: Scarabaeidae), a saproxylic beetle dependent on tree cavities. Insect Conserv Divers 9:38–48. doi: 10.1111/icad.12141 CrossRefGoogle Scholar
  42. Luce J-M (1996) Osmoderma eremita (Scopoli, 1763). Background information on invertebrates of the Habitats Directive and the Bern Convention. In: van Helsdingen PJ, Willemse L, Speight MCD (eds) Part I: crustacea, coleoptera and lepidoptera. Council of Europe, Strasbourg, pp 64–69Google Scholar
  43. Mason WH, Odum EP (1969) The effect of coprophagy on retention and bioelimination of radionuclides by detritus-feeding animals. In: Nelson DJ, Evans FC (eds) Proceedings of the 2nd national symposium on radioecology. Ann Arbor Press, Springfield, Michigan, pp 721–724Google Scholar
  44. Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45:2527–2542. doi: 10.1080/00222933.2011.596953 CrossRefGoogle Scholar
  45. Micó E, García-Lopez A, Sánchez A, Juárez M, Galante E (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? J Insect Conserv 19:141–153. doi: 10.1007/s10841-015-9754-9 CrossRefGoogle Scholar
  46. Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2014) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162. doi: 10.1111/acv.12075 CrossRefGoogle Scholar
  47. Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc 48:194–201. doi: 10.1007/PL00001767 CrossRefGoogle Scholar
  48. Nieto A, Alexander KNA (2010) European Red List of saproxylic beetles. Publications Office of the European Union, Luxembourg, BelgiumGoogle Scholar
  49. Oleksa A (2009) Conservation and ecology of the hermit beetle Osmoderma eremita s.l. in Poland. In: Buse J, Alexander KNA, Ranius T, Assmann T (eds) Saproxylic beetles—their role and diversity in European woodland and tree habitats. Proceedings of the 5th symposium and workshop on the conservation of saproxylic beetles. Pensoft Publishers, Sofia, Bulgaria, pp 177–188Google Scholar
  50. Pageix JP (1968) Sur les Cétonides des Chênes creux à Fontainebleau. Entomologiste (Paris) 24:33–36Google Scholar
  51. Palm T (1959) Die holz- und rinden-käfer der süd- und mittelschwedishen laubbäume. Opuscula Entomologica Supplementum 16, Entomologiska Sällskapet i Lund, Lund, SwedenGoogle Scholar
  52. Pawłowski J (1961) Prochnojady blaszkorożne w biocenozie leśnej Polski. Ekologia polska Ser A 9:355–437Google Scholar
  53. Pedroso FL, Temporetti PF, Beamud G, Diaz MM (2008) Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina. J Volcanol Geotherm Res 178:205–212. doi: 10.1016/j.volgeores.2008.06.018 CrossRefGoogle Scholar
  54. Poinar GO Jr, Thomas GM (1984) Laboratory guide to insect pathogens and parasites. College of Natural Resources University of California Berkeley, California. Plenum Press, New YorkCrossRefGoogle Scholar
  55. Quinto J, Marcos-García MA, Díaz-Castelazo C, Rico-Gray V, Brustel H, Galante E, Micó E (2012) Breaking down complex saproxylic communities: understanding sub-networks structure and implications to network robustness. PLoS ONE 7:e45062. doi: 10.1371/journal.pone.0045062 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Quinto J, Micó E, Marcos-García MA, Martínez-Falcón AP, Galante E (2014) Influence of tree hollow microenvironmental variables on saproxylic guild diversity in Iberian Mediterranean woodland. J Insect Conserv 18:981–992. doi: 10.1007/s10841-014-9705-x CrossRefGoogle Scholar
  57. Ranius T (2002a) Osmoderma eremita as an indicator of species richness of beetles in tree hollows. Biodivers Conserv 11:931–941. doi: 10.1023/A:1015364020043 CrossRefGoogle Scholar
  58. Ranius T (2002b) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91. doi: 10.1016/S0006-3207(01)00124-0 CrossRefGoogle Scholar
  59. Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94. doi: 10.1016/S0006-3207(00)00007-0 CrossRefGoogle Scholar
  60. Ranius T, Jansson N (2002) A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers Conserv 11:1759–1771. doi: 10.1023/A:1020343030085 CrossRefGoogle Scholar
  61. Ranius T, Nilsson SG (1997) Habitat of Osmoderma eremita Scop. (Coleoptera: Scarabaeidae), a beetle living in hollow trees. J Insect Conserv 1:193–204. doi: 10.1023/A:1018416000766 CrossRefGoogle Scholar
  62. Ranius T, Aguado LO, Antonsson K, Audisio P, Ballerio A, Carpaneto GM, Chobot K, Gjurašin B, Hanssen O, Huijbregts H, Lakatos F, Martin O, Neculiseanu Z, Nikitsky NB, Paill W, Pirnat A, Rizun V, Ruicnescu A, Stegner J, Süda I, Szwako P, Tamutis V, Telnov D, Tsinkevich V, Versteirt V, Vignon V, Vögeli M, Zach P (2005) Osmoderma eremita (Coleoptera, Scarabaeidae, Cetoniidae) in Europe. Anim Biodiv Conserv 28:1–44Google Scholar
  63. Ranius T, Niklasson M, Berg N (2009) Development of tree hollows in pedunculate oak (Quercus robur). Forest Ecol Manag 257:303–310. doi: 10.1016/j.foreco.2008.09.007 CrossRefGoogle Scholar
  64. Reid NM, Addison SL, MacDonald LJ, Lloyd-Jones G (2011) Biodiversity of active and inactive bacteria in the gut flora of wood-feeding Huhu beetle larvae (Prionoplus reticularis). Appl Environ Microbiol 77:7000–7006. doi: 10.1128/AEM.05609-11 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Roy PS, Williams RJ, Jones AR, Yassini I, Gibbs PJ, Coates B, West RJ, Scanes PR, Hudson JP, Nichol S (2001) Structure and function of south-east Australian estuaries. Estuar Coast Shelf S 53:351–384. doi: 10.1006/ecss.2001.0796 CrossRefGoogle Scholar
  66. Sánchez-Galván IR, Quinto J, Micó E, Galante E, Marcos-García MA (2014) Facilitation among saproxylic insects inhabiting tree hollows in a Mediterranean forest: the case of cetonids (Coleoptera: Cetoniidae) and syrphids (Diptera: Syrphidae). Environ Entomol 43:336–343. doi: 10.1603/EN13075 CrossRefPubMedGoogle Scholar
  67. Schaffrath U (2003) Zur Lebensweise, Verbreitung und Gefährdung von Osmoderma eremita (Scopoli, 1763) (Coleoptera; Scarabaeoidea, Cetoniidae, Trichiinae), (Teil 1). Philippia 10:157–248Google Scholar
  68. Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K (2014) Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genom 15:1096. doi: 10.1186/1471-2164-15-1096 CrossRefGoogle Scholar
  69. Seleiman MF, Santanen A, Stoddard FL, Mäkelä P (2012) Feedstock quality and growth of bioenergy crops fetilized with sewage sludge. Chemosphere 89:1211–1217. doi: 10.1016/j.chemosphere.2012.07.031 CrossRefPubMedGoogle Scholar
  70. Siitonen J (2012) Microhabitats. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, UK, pp 150–182CrossRefGoogle Scholar
  71. Siitonen J, Ranius T (2015) The importance of veteran trees for saproxylic insects. In: Kirby KJ, Watkins C (eds) Europe´s changing woods and forests: from wildwood to managed landscapes. CAB International, Croydon, pp 140–153CrossRefGoogle Scholar
  72. Sirami C, Jay-Robert P, Brustel H, Valladares L, Le Guilloux S, Martin JL (2008) Saproxylic beetles assemblages of old holm oak trees in Mediterranean region: role of a keystone structure in a changing heterogeneous landscape. Revue D Ecologie (Terre Vie) 10:101–109Google Scholar
  73. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and environment series no. 42, Council of Europe, Strasbourg, FranceGoogle Scholar
  74. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  75. Suh SO, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145. doi: 10.1046/j.1365-294X.2003.01973.x CrossRefPubMedGoogle Scholar
  76. Szlávecz K, Pobozsny M (1995) Coprophagy in isopods and diplopoids: a case for indirect interaction. Acta Zool Fenn 196:124–128Google Scholar
  77. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85. doi: 10.1111/brv.12158 CrossRefPubMedGoogle Scholar
  78. Videla M, Valladares GR, Salvo A (2012) Choosing between good and better: optimal oviposition drives host plant selection when parents and offspring agree on best resources. Oecologia 169:743–751. doi: 10.1007/s00442-011-2231-6 CrossRefPubMedGoogle Scholar
  79. Williams IS (1999) Slow-growth, high-mortality: a general hypothesis, or is it? Ecol Entomol 24:490–495. doi: 10.1046/j.1365-2311.1999.00217.x CrossRefGoogle Scholar
  80. Yee DA, Juliano SA (2006) Consequences of detritus type in an aquatic microsystems: assessing water quality, microorganisms, and the performance of the dominant consumer. Freshw Biol 51:448–459. doi: 10.1111/j.1365-2427.2005.01504.x CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, Changmann Y, Nam Y-D, Kim Y-J, Choi J-H, Kim J-Y, Shin N-R, Kim S-H, Lee W-J, Bae J-W (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. doi: 10.1128/AEM.01226-14 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biology, Section of Biodiversity and Environmental ScienceUniversity of TurkuTurkuFinland
  2. 2.Herbarium, Department of BiologyUniversity of TurkuTurkuFinland
  3. 3.Spatial Foodweb Ecology Group, Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations