, Volume 181, Issue 4, pp 1163–1172 | Cite as

Ellenberg’s water table experiment put to the test: species optima along a hydrological gradient

  • Maik Bartelheimer
  • Peter Poschlod
Community ecology – original research


An important aspect of niche theory is the position of species’ optima along ecological gradients. It is widely believed that a species’ ecological optimum takes its shape only under competitive pressure. The ecological optimum, therefore, is thought to differ from the physiological optimum in the absence of interspecific competition. Ellenberg’s Hohenheim water table experiment has been very influential in this context. However, the water table gradient in Ellenberg’s experiment was produced by varying the soil thickness above the water table, which confounded the potentially disparate impacts of water table depth (WTD) and soil depth on species growth. Accordingly, here we have re-evaluated Ellenberg’s work. Specifically, we tested the hypothesis that physiological and ecological optima are identical and unaffected by interspecific interaction. We used the same six grasses as in Ellenberg’s experiments, but in our mesocosms, WTD was varied but soil depth kept constant. The design included both an additive component (with/without plant interaction) and a substitutive component (monocultures vs. species mixtures). The results show that the physiological optima along the hydrological gradient varied greatly between species, even in the absence of interspecific interaction. Within species, however, physiological and ecological optima appeared identical in most cases, irrespective of the competition treatment. We conclude that the ‘physiological capacity’ of species largely determines where they are able to persist and that any impact of interspecific interaction is only marginal. These findings are at variance with Ellenberg’s rule, where competition is considered to shift the distribution of a species away from its physiological optimum.


Hohenheim groundwater table experiment Hydrological niche Ecological optimum Physiological optimum Water table depth 



The authors would like to thank Sibylle Bauer, Philipp Glaab, Stefanie Meier, Benedikt Müller, Daniel Peterlik, and Christoph Schmid for help during setup und harvest of the experiment; Ingeborg Lauer for general maintenance; and the gardeners of the Botanical Garden of Regensburg for technical support. We greatly appreciated the valuable input from discussions with Jonathan Silvertown (Open University of Milton Keynes, UK) and Richard Michalet (Université Bordeaux, France). We thank two anonymous reviewers and John Hodgson for their constructive comments that helped to improve the manuscript.

Author contribution statement

MB and PP conceived the study, MB designed and executed the experiments and analyses, and MB and PP wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2016_3624_MOESM1_ESM.pptx (176 kb)
Supplementary material 1 (PPTX 175 kb)


  1. Araya Y, Silvertown J, Gowing DJ, McConway KJ, Linder P, Midgley G (2011) A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytol 189:253–258. doi: 10.1111/j.1469-8137.2010.03475.x CrossRefPubMedGoogle Scholar
  2. Austin MP, Austin BO (1980) Behaviour of experimental plant communities along a nutrient gradient. J Ecol 68:891–918. doi: 10.2307/2259464 CrossRefGoogle Scholar
  3. Bartelheimer M, Poschlod P (2013) The response of grassland species to nitrate versus ammonium coincides with their pH optima. J Veg Sci 25:760–770. doi: 10.1111/jvs.12124 CrossRefGoogle Scholar
  4. Bartelheimer M, Poschlod P (2016) Functional characterizations of Ellenberg indicator values—a review on ecophysiological determinants. Funct Ecol 30:506–516. doi: 10.1111/1365-2435.12531 CrossRefGoogle Scholar
  5. Bartelheimer M, Gowing DJG, Silvertown J (2010) Explaining hydrological niches: the decisive role of below-ground competition in two closely related Senecio species. J Ecol 98:126–136. doi: 10.1111/j.1365-2745.2009.01598.x CrossRefGoogle Scholar
  6. Beyschlag W, Ryel RJ, Ullmann I, Eckstein J (1996) Experimental studies on the competitive balance between two Central European roadside grasses with different growth forms. Botanica Acta 109:449–455. doi: 10.1111/j.1438-8677.1996.tb00597.x CrossRefGoogle Scholar
  7. Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295. doi: 10.1016/0169-5347(96)10034-3 CrossRefPubMedGoogle Scholar
  8. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. The University of Chicago Press, Chicago & London. doi: 10.7208/chicago/9780226101811.001.0001 Google Scholar
  9. Crawley MJ (1997) The structure of plant communities. In: Crawley MJ (ed) Plant Ecology. Blackwell Science Ltd, Oxford, pp 475–531. doi:  10.1002/9781444313642.ch14
  10. Ellenberg H (1953) Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Berichte der Deutschen Botanischen Gesellschaft 65:350–361. doi: 10.1111/j.1438-8677.1953.tb00671.x Google Scholar
  11. Ellenberg H (1954) Ueber einige Fortschritte der kausalen Vegetationskunde. Vegetatio 5(6):199–211. doi: 10.1007/BF00299574 CrossRefGoogle Scholar
  12. Ellenberg H, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn. Verlag Erich Goltze KG, GöttingenGoogle Scholar
  13. Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538. doi: 10.4141/cjss95-075 CrossRefGoogle Scholar
  14. Ernst W (1978) Discrepancy between ecological and physiological optima of plant species. A re-interpretation. Oecologia Plantarum 13:175–188Google Scholar
  15. Fridley JD, Grime JP, Askew AP, Moser B, Stevens CJ (2011) Soil heterogeneity buffers community response to climate change in species-rich grassland. Glob Change Biol 17:2002–2011. doi: 10.1111/j.1365-2486.2010.02347.x CrossRefGoogle Scholar
  16. Fuhlendorf SD, Smeins FE (1998) The influence of soil depth on plant species response to grazing within a semi-arid savanna. Plant Ecol 138:89–96. doi: 10.1023/A:1009704723526 CrossRefGoogle Scholar
  17. García-Baquero G, Silvertown J, Gowing D, Valle CJ (2016) Dissecting the hydrological niche: soil moisture, space and lifespan. J Veg Sci 27:219–226. doi: 10.1111/jvs.12353 CrossRefGoogle Scholar
  18. Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. doi: 10.1007/s11104-008-9814-y CrossRefGoogle Scholar
  19. Hector A, von Felten S, Hautier Y, Weilenmann M, Bruelheide H (2012) Effects of dominance and diversity on productivity along Ellenberg’s experimental water table gradients. PLoS One 7:e43358. doi: 10.1371/journal.pone.0043358 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proceedings of the National Academy of Science USA 106:19659–19665. doi: 10.1073/pnas.0905137106 CrossRefGoogle Scholar
  21. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  22. Hutchinson GE (1957) Cold spring harbor symposium on quantitative biology. Concluding remarks 22:415–427Google Scholar
  23. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi: 10.1007/BF00333714 CrossRefGoogle Scholar
  24. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. doi: 10.2307/3235676 CrossRefGoogle Scholar
  25. Kenkel NC, McIlraith AL, Burchill CA, Jones G (1991) Competition and the response of three plant species to a salinity gradient. Can J Bot 69:2497–2502. doi: 10.1139/b91-310 CrossRefGoogle Scholar
  26. Kutschera L, Lichtenegger E (1982) Wurzelatlas mitteleuropäischer Grünlandpflanzen I: Monocotyledonae. Gustav Fischer Verlag, StuttgartGoogle Scholar
  27. Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. OIKOS 107:433–438. doi: 10.1111/j.0030-1299.2004.13250.x Google Scholar
  28. Martorell C, Almanza-Celis CA, Pérez-García EA, Sánchez-Ken JG (2015) Co-existence in a species-rich grassland: competition, facilitation and niche structure over a soil depth gradient. J Veg Sci 26:674–685. doi: 10.1111/jvs.12283 CrossRefGoogle Scholar
  29. McConnaughay KDM, Bazzaz FA (1991) Is physical space a soil resource? Ecology 72:94–103. doi: 10.2307/1938905 CrossRefGoogle Scholar
  30. McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Biblin AE, Kielland K, Kwiatkowske BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71. doi: 10.1038/415068a CrossRefPubMedGoogle Scholar
  31. Meziane D, Shipley B (1999) Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct Ecol 13:611–622. doi: 10.1046/j.1365-2435.1999.00359.x CrossRefGoogle Scholar
  32. Pavelka M, Acosta M, Marek MV, Kutsch W, Janous D (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179. doi: 10.1007/s11104-007-9213-9 CrossRefGoogle Scholar
  33. Pickett STA, Bazzaz FA (1978) Organization of an assemblage of early successional species on a soil moisture gradient. Ecology 59:1248–1255. doi: 10.2307/1938238 CrossRefGoogle Scholar
  34. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi: 10.1016/j.tree.2004.09.003 CrossRefGoogle Scholar
  35. Silvertown J, Law R (1987) Do plants need niches? Some recent developments in plant community ecology. Trends Ecol Evol 2:24–26. doi: 10.1016/0169-5347(87)90197-2 CrossRefPubMedGoogle Scholar
  36. Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63. doi: 10.1038/21877 CrossRefGoogle Scholar
  37. Silvertown J, Araya Y, Gowing D (2015) Hydrological niches in terrestrial plant communities: a review. J Ecol 103:93–108. doi: 10.1111/1365-2745.12332 CrossRefGoogle Scholar
  38. Stanford G, Frere MH, Schwaninger DH (1973) Temperature coefficient of soil nitrogen mineralization. Soil Sci 115:321–323CrossRefGoogle Scholar
  39. Woodward FI, Diament AD (1991) Functional approaches to predicting the ecological effects of global change. Funct Ecol 5:202–212. doi: 10.2307/2389258 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Plant Sciences, Faculty of Biology and Preclinical MedicineUniversity of RegensburgRegensburgGermany
  2. 2.Institute for Evolution and Biodiversity, Faculty of BiologyUniversity of MünsterMünsterGermany

Personalised recommendations