, Volume 181, Issue 4, pp 1243–1258 | Cite as

Biotic nitrogen fixation in the bryosphere is inhibited more by drought than warming

  • Jonathan A. WhiteleyEmail author
  • Andrew Gonzalez
Global change ecology – original research


The boreal forest is of particular interest to climate change research due to its large circumpolar distribution and accumulated soil carbon pool. Carbon uptake in this ecosystem is nitrogen (N)-limited, therefore factors affecting carbon or nitrogen dynamics in the boreal forest can have consequences for global climate. We used a 2-year field experiment to investigate the response of biotic nitrogen fixation by cyanobacteria associated with boreal forest bryophytes, in a factorial experiment combining simulated climate change with habitat fragmentation treatments. We simulated climate change conditions using open-top greenhouse chambers in the field, which increased mean and maximum temperatures, and created a precipitation gradient from ambient levels in the center to extreme drought conditions at the periphery of the chamber. The dry patches near the chamber walls exhibited almost no N-fixation, despite having similar densities of cyanobacteria (predominantly Stigonema sp.) as other patches. Rates of N-fixation were best explained by a model containing moisture, fragmentation, cyanobacteria density and time; warming was not a significant variable affecting N-fixation. There was no significant interaction between warming and fragmentation. These results suggest that cyanobacteria responded physiologically to drought by reducing N-fixation activity long before any changes in density. Ecosystem processes, such as N-fixation, can respond in the short term to environmental change much more rapidly than changes in the underlying community structure. Such rapid physiological responses may occur faster than demographic insurance effects of biodiversity.


Climate-change Habitat fragmentation Nitrogen fixation Cyanobacteria Pleurozium schreberi Boreal forest 



This project was supported by a Post-Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC) to JAW, with a Natural Sciences and Engineering Research Council discovery grant and Canada Research Chair funding to AG. Z. Lindo helped with field work and provided friendly review during manuscript preparation. O. Choulik provided logistical support, and many nourishing meals, in Schefferville. M. Mehta helped with cyanobacteria data collection. J. Connolly provided helpful advice on mixed modeling approaches. The manuscript was greatly improved by constructive comments from three reviewers.

Author contribution statement

JAW and AG conceived and designed the experiment. JAW conducted fieldwork, collected and processed samples, and analyzed the data; JAW and AG analyzed the temperature data. JAW wrote the manuscript, AG provided editorial advice.

Supplementary material

442_2016_3601_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1,056 kb)


  1. Ahn CY, Park MH, Joung SH, Kim HS, Jang KY, Oh HM (2003) Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environ Sci Technol 37(13):3031–3037. doi: 10.1021/es034048z CrossRefPubMedGoogle Scholar
  2. Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Baldwin IT, Caldwell MM, Heldmaier G, Mooney HA, Schulze ED, Sommer U, Belnap J, Lange OL, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150. Springer, Berlin, Heidelberg, pp 241–261CrossRefGoogle Scholar
  3. Bewley JD (1995) Physiological aspects of desiccation tolerance—a retrospect. Int J Plant Sci 156(4):393–403. doi: 10.2307/2475057 CrossRefGoogle Scholar
  4. Birkemoe T, Liengen T (2000) Does collembolan grazing influence nitrogen fixation by cyanobacteria in the high Arctic? Polar Biol 23(8):589–592. doi: 10.1007/s003000000133 CrossRefGoogle Scholar
  5. Bonan GB, Van Cleve K (1992) Soil temperature nitrogen mineralization and carbon source-sink relationships in boreal forests. Can J For Res 22(5):629–639. doi: 10.1139/x92-084 CrossRefGoogle Scholar
  6. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334(6056):652–655. doi: 10.1126/science.1210288 CrossRefPubMedGoogle Scholar
  7. Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34(12):1–29CrossRefGoogle Scholar
  8. Chapin FS III, Oechel WC, Van Cleve K, Lawrence W (1987) The role of mosses in the phosphorus cycling of an Alaskan USA black spruce forest. Oecologia 74(2):310–315. doi: 10.1007/BF00379375 CrossRefGoogle Scholar
  9. Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7(1):014007. doi: 10.1088/1748-9326/7/1/014007
  10. DeLuca T, Zackrisson O, Gentili F, Sellstedt A, Nilsson MC (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152(1):121–130. doi: 10.1007/s00442-006-0626-6 CrossRefPubMedGoogle Scholar
  11. DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419(6910):917–920. doi: 10.1038/nature01051 CrossRefPubMedGoogle Scholar
  12. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320(5880):1181. doi: 10.1126/science.1154836
  13. Elmendorf SC, Henry GHR, Hollister RD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland C, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15(2):164–175. doi: 10.1111/j.1461-0248.2011.01716.x
  14. Environment Canada (2012) Canadian climate normals or averages 1971–2000. Available at: Accessed 6 May 2012
  15. Fitzjarrald DR, Moore KE (1994) Growing-season boundary-layer climate and surface exchanges in a sub-arctic lichen woodland. J Geophys Res Atmos 99(D1):1899–1917. doi: 10.1029/93jd01019 CrossRefGoogle Scholar
  16. Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8(15):1–27CrossRefGoogle Scholar
  17. Gentili F, Nilsson MC, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56(422):3121–3127. doi: 10.1093/jxb/eri309 CrossRefPubMedGoogle Scholar
  18. Gonzalez A, Loreau M (2009) The causes and consequences of compensatory dynamics in ecological communities. Annu Rev Ecol Evol Syst 40(1):393–414. doi: 10.1146/annurev.ecolsys.39.110707.173349 CrossRefGoogle Scholar
  19. Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I (1998) Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281(5385):2045–2047CrossRefPubMedGoogle Scholar
  20. Grant RF, Black TA, Gaumont-Guay D, Kljun N, Barr AG, Morgenstern K, Nesic Z (2006) Net ecosystem productivity of boreal aspen forests under drought and climate change: mathematical modelling with Ecosys. Agric For Meteorol 140(1–4):152–170. doi: 10.1016/j.agrformet.2006.01.012 CrossRefGoogle Scholar
  21. Guillard RRL (2005) Purification methods for microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier/Academic Press, BurlingtonGoogle Scholar
  22. Gundale MJ, Gustafsson H, Nilsson MC (2009) The sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forests. Can J For Res 39(12):2542–2549. doi: 10.1139/X09-160 CrossRefGoogle Scholar
  23. Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytol 194(2):453–463. doi: 10.1111/j.1469-8137.2012.04071.x CrossRefPubMedGoogle Scholar
  24. Gundale MJ, Wardle DA, Nilsson MC (2012) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett 8(5):805–808. doi: 10.1098/rsbl.2012.0429 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) Acetylene-ethylene assay for N2 fixation—laboratory and field evaluation. Plant Physiol 43(8):1185–1207CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of antarctic cyanobacterial mats. Polar Biol 12(6–7). doi: 10.1007/BF00236981
  27. Heyder U, Schaphoff S, Gerten D, Lucht W (2011) Risk of severe climate change impact on the terrestrial biosphere. Environ Res Lett 6(3). doi: 10.1088/1748-9326/6/3/034036
  28. Hollister RD, Webber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Chang Biol 6(7):835–842. doi: 10.1046/j.1365-2486.2000.00363.x CrossRefGoogle Scholar
  29. Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454(7202):327–U34. doi: 10.1038/nature07028 CrossRefPubMedGoogle Scholar
  30. Jackson BG, Martin P, Nilsson MC, Wardle DA (2010) Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos 120(4):570–581. doi: 10.1111/j.1600-0706.2010.18641.x CrossRefGoogle Scholar
  31. Lechowicz MJ, Adams MS (1978) Diurnal and seasonal structure of the climate at Scheffer Ville, Quebec. Arct Alp Res 10(1):95–104CrossRefGoogle Scholar
  32. Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests: towards a less ’phytocentric’ perspective. Plant Soil 242(1):123–135. doi: 10.1023/A:1019650226585 CrossRefGoogle Scholar
  33. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259(4):698–709. doi: 10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  34. Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13(4):612–627. doi: 10.1007/s10021-010-9336-3 CrossRefGoogle Scholar
  35. Lindo Z, Whiteley JA (2011) Old trees contribute bio-available nitrogen through canopy bryophytes. Plant Soil 342(1–2):1–8. doi: 10.1007/s11104-010-0678-6 Google Scholar
  36. Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci USA 100(22):12765–12770. doi: 10.1073/pnas.2235465100
  37. Mäkipää R, Karjalainen T, Pussinen A, Kellomäki S (1999) Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Can J For Res 29(10):1490–1501. doi: 10.1139/x99-123 CrossRefGoogle Scholar
  38. Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3(s1):20–32. doi: 10.1111/j.1365-2486.1997.gcb136.x CrossRefGoogle Scholar
  39. Markham JH (2009) Variation in moss-associated nitrogen fixation in boreal forest stands. Oecologia 161(2):353–359. doi: 10.1007/S00442-009-1391-0 CrossRefPubMedGoogle Scholar
  40. McNabb DH, Geist JM (1979) Acetylene-reduction assay of symbiotic N2 fixation under field conditions. Ecology 60(5):1070–1072. doi: 10.2307/1936873 CrossRefGoogle Scholar
  41. Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120,000-year chronosequence in New Zealand. Ecology 90(8):2190–2201. doi: 10.1890/08-0877.1 CrossRefPubMedGoogle Scholar
  42. Moore TR (1980) The nutrient status of subarctic woodland soils. Arct Alp Res 12(2):147–160CrossRefGoogle Scholar
  43. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373. doi: 10.1073/pnas.1006463107
  44. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  45. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. doi: 10.1038/nature01286 CrossRefPubMedGoogle Scholar
  46. Payette S, Fortin MJ, Gamache I (2001) The subarctic forest-tundra: the structure of a biome in a changing climate. Bioscience 51(9):709–718. doi:10.1641/0006-3568(2001) 051[0709:TSFTTS]2.0.CO;2CrossRefGoogle Scholar
  47. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at:
  48. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(1):1–61Google Scholar
  49. Rousk K, Jones DL, DeLuca TH (2014) The resilience of nitrogen fixation in feather moss (Pleurozium schreberi)-cyanobacteria associations after a drying and rewetting cycle. Plant Soil 377(1–2):159–167. doi: 10.1007/s11104-013-1984-6 CrossRefGoogle Scholar
  50. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  51. Sanderson MG, Hemming DL, Betts RA (2011) Regional temperature and precipitation changes under high-end (\(\ge\)4 degrees C) global warming. Philos Trans R Soc A Math Phys Eng Sci 369(1934):85–98. doi: 10.1098/rsta.2010.0283 CrossRefGoogle Scholar
  52. Scherer S, Potts M (1989) Novel water stress protein from a desiccation-tolerant cyanobacterium. Purification and partial characterization. J Biol Chem 264(21):12546–12553Google Scholar
  53. Schöllhorn R, Burris RH (1967) Acetylene as a competitive inhibitor of N2 fixation. Proc Natl Acad Sci USA 58(1):213–216. doi: 10.1073/pnas.58.1.213 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shen KP, Harte J (2000) Ecosystem climate manipulations. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 353–369CrossRefGoogle Scholar
  55. Soil Classification Working Group, Agriculture and Agri-Food Canada (1998) The Canadian system of soil classification, 3rd edn. Agriculture and Agri-Food Canada vol 41647. NRC Research Press, Ottawa. Available at:
  56. Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Company, New YorkGoogle Scholar
  57. Sorensen PL, Michelsen A (2011) Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob Chang Biol 17(1):528–537. doi: 10.1111/j.1365-2486.2010.02234.x CrossRefGoogle Scholar
  58. Staddon P, Lindo Z, Crittenden PD, Gilbert F, Gonzalez A (2010) Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol Lett 13(5):543–552. doi: 10.1111/J.1461-0248.2010.01450.X CrossRefPubMedGoogle Scholar
  59. Taggart RE, Cross AT (2009) Global greenhouse to icehouse and back again: the origin and future of the boreal forest biome. Glob Planet Chang 65(3–4):115–121. doi: 10.1016/j.gloplacha.2008.10.014 CrossRefGoogle Scholar
  60. Therneau TM, Atkinson B, Ripley B (2010) rpart: recursive partitioning, R package version 3.1-48. Available at:
  61. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148. doi: 10.1038/nature02121 CrossRefPubMedGoogle Scholar
  62. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106(3):395–409. doi: 10.1639/05 CrossRefGoogle Scholar
  63. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(1):1–45. doi: 10.1023/A:1015798428743 CrossRefGoogle Scholar
  64. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103(5):1342–1346CrossRefPubMedPubMedCentralGoogle Scholar
  65. Watkinson AR, Gill JA (2002) Climate change and dispersal. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Blackwell Science, Malden, pp 410–428Google Scholar
  66. Whiteley J (2012) Climate change and habitat fragmentation in a boreal forest bryosphere experiment. PhD thesis. McGill University, MontrealGoogle Scholar
  67. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21(12):1–20Google Scholar
  68. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York. doi: 10.1007/978-0-387-98141-3
  69. Wickham H (2011) plyr: tools for splitting, applying and combining data, R package version 1.4. Available at:
  70. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96(4):1463–1468. doi: 10.1073/pnas.96.4.1463 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85(12):3327–3334. doi: 10.1890/04-0461 CrossRefGoogle Scholar
  72. Zackrisson O, DeLuca T, Gentili F, Sellstedt A, Jäderlund A (2009) Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia 160(2):309–319. doi: 10.1007/s00442-009-1299-8
  73. Zehr JP, Montoya J (2007) Measuring N2 fixation in the field. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Boston, pp 193–205CrossRefGoogle Scholar
  74. Zhang G, Zhang P, Liu H, Wang B (2006) Ultrasonic damages on cyanobacterial photosynthesis. Ultrason Sonochem 13(6):501–505. doi: 10.1016/j.ultsonch.2005.11.001 CrossRefPubMedGoogle Scholar
  75. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Statistics for Biology and Health. Springer, New York. Available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations