, Volume 181, Issue 2, pp 621–632 | Cite as

The role of drought- and disturbance-mediated competition in shaping community responses to varied environments

  • Joseph D. NapierEmail author
  • Erin A. Mordecai
  • Robert W. Heckman
Global change ecology – Original research


By altering the strength of intra- and interspecific competition, droughts may reshape plant communities. Furthermore, species may respond differently to drought when other influences, such as herbivory, are considered. To explore this relationship, we conducted a greenhouse experiment measuring responses to inter- and intraspecific competition for two grasses, Schedonorus arundinaceus and Paspalum dilatatum, while varying water availability and simulating herbivory via clipping. We then parameterized population growth models to examine the long-term outcome of competition under these conditions. Under drought, S. arundinaceus was less water stressed than P. dilatatum, which exhibited severe water stress; clipping alleviated this stress, increasing the competitive ability of P. dilatatum relative to S. arundinaceus. Although P. dilatatum competed weakly under drought, clipping reduced water stress in P. dilatatum, thereby enhancing its ability to compete with S. arundinaceus under drought. Supporting these observations, population growth models predicted that P. dilatatum would exclude S. arundinaceus when clipped under drought, while S. arundinaceus would exclude P. dilatatum when unclipped under drought. When the modeled environment varied temporally, environmental variation promoted niche differences that, though insufficient to maintain stable coexistence, prevented unconditional competitive exclusion by promoting priority effects. Our results suggest that it is important to consider how species respond not just to stable, but also to variable, environments. When species differ in their responses to drought, competition, and simulated herbivory, stable environments may promote competitive exclusion, while fluctuating environments may promote coexistence. These interactions are critical to understanding how species will respond to global change.


Climate change Coexistence Herbivory Plant community composition Grassland 



This work was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology (DBI-1202892) to E. A. M. and a National Science Foundation Doctoral Dissertation Improvement Grant to R. W. H. (DEB-1311289). We thank C. Mitchell and F. Halliday for discussions of experimental design, K. Gross for statistical advice, and R. Peet for helpful comments on an earlier draft. The authors have no conflicts of interest to declare.

Author contribution statement

J. D. N. and R. W. H. conceived, designed, and performed the greenhouse experiment. J. D. N. and R. W. H. analyzed the data. J. D. N. and E. A. M. developed and ran the modeling simulations. J. D. N., R. W. H., and E. A. M. wrote the manuscript.

Compliance with ethical standards

This experiment complies with the current laws of the USA, where the experiment was performed.

Supplementary material

442_2016_3582_MOESM1_ESM.pdf (24 kb)
Supplementary material 1 (PDF 23 kb)
442_2016_3582_MOESM2_ESM.docx (1.3 mb)
Supplementary material 2 (DOCX 1285 kb)


  1. Adler PB, HilleRisLambers J, Kyriakidis PC, Guan Q, Levine JM (2006) Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc Natl Acad Sci USA 103:12793–12798. doi: 10.1073/pnas.0600599103 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adler PB, Dalgleish HJ, Ellner SP (2012) Forecasting plant community impacts of climate variability and change: when do competitive interactions matter? J Ecol 100:478–487. doi: 10.1111/j.1365-2745.2011.01930.x CrossRefGoogle Scholar
  3. Allan E, Crawley MJ (2011) Contrasting effects of insect and molluscan herbivores on plant diversity in a long-term field experiment. Ecol Lett 14:1246–1253. doi: 10.1111/j.1461-0248.2011.01694.x CrossRefPubMedGoogle Scholar
  4. Angert AL, Huxman TE, Chesson P, Venable DL (2009) Functional tradeoffs determine species coexistence via the storage effect. Proc Natl Acad Sci USA 106:11641–11645. doi: 10.1073/pnas.0904512106 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antonovics J, Fowler NL (1985) Analysis of frequency and density effects on growth in mixtures of Salvia splendens and Linum grandiflorum using hexagonal fan designs. J Ecol 73:219–234CrossRefGoogle Scholar
  6. Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90. doi: 10.2134/agronj1989.00021962008100010015x CrossRefGoogle Scholar
  7. Bedel AP, Mote TL, Goodrick SL (2013) Climate change and associated fire potential for the south-eastern United States in the 21st century. Int J Wildland Fire 22:1034–1043. doi: 10.1071/WF13018 CrossRefGoogle Scholar
  8. Brion G, Brye KR, Haggard BE, West C, Brahana JV (2011) Land-use effects on water quality of a first-order stream in the Ozark Highlands, mid-southern United States. River Res Appl 27:772–790. doi: 10.1002/rra.1394 CrossRefGoogle Scholar
  9. Brooker R et al (2005) The importance of importance. Oikos 109:63–70. doi: 10.1111/j.0030-1299.2005.13557.x CrossRefGoogle Scholar
  10. Bu Z-J, Zheng X-X, Rydin H, Moore T, Ma J (2013) Facilitation vs. competition: does interspecific interaction affect drought responses in Sphagnum? Basic Appl Ecol 14:574–584CrossRefGoogle Scholar
  11. Carlyle CN, Fraser LH, Turkington R (2010) Using three pairs of competitive indices to test for changes in plant competition under different resource and disturbance levels. J Veg Sci 21:1025–1034. doi: 10.1111/j.1654-1103.2010.01207.x CrossRefGoogle Scholar
  12. Carroll IT, Cardinale BJ, Nisbet RM (2011) Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology 92:1157–1165. doi: 10.1890/10-0302.1 CrossRefPubMedGoogle Scholar
  13. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi: 10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  14. Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–553. doi: 10.1086/286080 CrossRefPubMedGoogle Scholar
  15. Chesson P et al (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253. doi: 10.1007/s00442-004-1551-1 CrossRefPubMedGoogle Scholar
  16. Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362. doi: 10.1007/BF00385251 CrossRefGoogle Scholar
  17. Cornaglia PS, Schrauf GE, Deregibus VA (2009) Flooding and grazing promote germination and seedling establishment in the perennial grass Paspalum dilatatum. Aust Ecol 34:343–350. doi: 10.1111/j.1442-9993.2009.01935.x CrossRefGoogle Scholar
  18. Damour G, Vandame M, Urban L (2008) Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis). J Plant Physiol 165:1370–1378. doi: 10.1016/j.jplph.2007.10.014 CrossRefPubMedGoogle Scholar
  19. Dewi S, Chesson P (2003) The age-structured lottery model. Theor Popul Biol 64:331–343. doi: 10.1016/S0040-5809(03)00094-7 CrossRefPubMedGoogle Scholar
  20. Edwards EJ, Still CJ (2008) Climate, phylogeny and the ecological distribution of C4 grasses. Ecol Lett 11:266–276. doi: 10.1111/j.1461-0248.2007.01144.x CrossRefPubMedGoogle Scholar
  21. Elmore MT, Brosnan JT, Mueller TC, Horvath BJ, Kopsell DA, Breeden GK (2013) Seasonal application timings affect dallisgrass (Paspalum dilatatum) control in tall fescue. Weed Technol 27:557–564. doi: 10.1614/WT-D-13-00007.1 CrossRefGoogle Scholar
  22. Emam Y, Shekoofa A, Salehi F, Jalali AH, Pessarakli M (2012) Drought stress effects on two common bean cultivars with contrasting growth habits. Arch Agron Soil Sci 58:527–534. doi: 10.1080/03650340.2010.530256 CrossRefGoogle Scholar
  23. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189. doi: 10.1093/aob/mcf027 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279. doi: 10.1055/s-2004-820867 CrossRefPubMedGoogle Scholar
  25. Fowler N (1986) The role of competition in plant communities in arid and semiarid regions. Annu Rev Ecol Syst 17:89–110. doi: 10.2307/2096990 CrossRefGoogle Scholar
  26. Gao Y, Wang D, Ba L, Bai Y, Liu B (2008) Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environ Exp Bot 63:113–122. doi: 10.1016/j.envexpbot.2007.10.030 CrossRefGoogle Scholar
  27. Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644. doi: 10.1093/aob/mcn093 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gibson D, Newman J (2001) Festuca arundinacea Schreber (F. elatior L. ssp. arundinacea (Schreber) Hackel). J Ecol 89:304–324. doi: 10.1046/j.1365-2745.2001.00561.x CrossRefGoogle Scholar
  29. Goldberg D, Novoplansky A (1997) On the relative importance of competition in unproductive environments. J Ecol 85:409–418. doi: 10.2307/2960565 CrossRefGoogle Scholar
  30. Grace JB (1995) On the measurement of plant competition intensity. Ecology 76:305–308. doi: 10.2307/1940651 CrossRefGoogle Scholar
  31. Gravel D, Guichard F, Hochberg ME (2011) Species coexistence in a variable world. Ecol Lett 14:828–839. doi: 10.1111/j.1461-0248.2011.01643.x CrossRefPubMedGoogle Scholar
  32. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature, UK 242:344–347CrossRefGoogle Scholar
  33. Grime JP (1985) Towards a functional description of vegetation. In: White J (ed) The population structure of vegetation, vol 3. Springer, the Netherlands, pp 503–514CrossRefGoogle Scholar
  34. Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology 82:2045–2058. doi: 10.2307/2680068 CrossRefGoogle Scholar
  35. Holt RD (1985) Density-independent mortality, non-linear competitive interactions, and species coexistence. J Theor Biol 116:479–493. doi: 10.1016/S0022-5193(85)80084-9 CrossRefGoogle Scholar
  36. Huntly N (1991) Herbivores and the dynamics of communities and ecosystems. Annu Rev Ecol Syst 22:477–503. doi: 10.2307/2097271 CrossRefGoogle Scholar
  37. Huxman TE, Kimball S, Angert AL, Gremer JR, Barron-Gafford GA, Venable DL (2013) Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annuals. Am J Bot 100:1369–1380. doi: 10.2307/23434490 CrossRefPubMedGoogle Scholar
  38. Inouye BD (2001) Response surface experimental designs for investigating interspecific competition. Ecology 82:2696–2706. doi: 10.2307/2679954 CrossRefGoogle Scholar
  39. Jacobo E, Rodríguez A, Durand M, Deregibus V (2009) Sowing date and nitrogen supply determine the outcome of competition between dallisgrass (Paspalum dilatatum Poir.) and tall fescue (Festuca arundinacea Schreb.) in the Pampas region of Argentina. Grass Forage Sci 64:71–79. doi: 10.1111/j.1365-2494.2008.00669.x CrossRefGoogle Scholar
  40. Koyama A, Tsuyuzaki S (2013) Facilitation by tussock-forming species on seedling establishment collapses in an extreme drought year in a post-mined “Sphagnum” peatland. J Veg Sci 24:473–483. doi: 10.2307/23466940 CrossRefGoogle Scholar
  41. Lehtila K, Boalt E (2004) The use and usefulness of artificial herbivory in plant-herbivore studies. In: Weisser WW Siemann E (Eds.) Ecological Studies, vol 173. Insects and ecosystem function. Springer, Berlin Heidelberg New YorkS, pp 257–275Google Scholar
  42. Levine JM, Rees M (2004) Effects of temporal variability on rare plant persistence in annual systems. Am Nat 164:350–363. doi: 10.1086/422859 CrossRefPubMedGoogle Scholar
  43. Li FR, Zhao AF, Zhou HY, Zhang TH, Zhao X (2002) Effects of simulated grazing on growth and persistence of Artemisia frigida in a semiarid sandy rangeland. Grass Forage Sci 57:239–246. doi: 10.1046/j.1365-2494.2002.00322.x CrossRefGoogle Scholar
  44. Li J, Xiao T, Zhang Q, Dong M (2013) Interactive effect of herbivory and competition on the invasive plant Mikania micrantha. PLoS One 8(5):e62608. doi: 10.1371/journal.pone.0062608 CrossRefPubMedPubMedCentralGoogle Scholar
  45. López IF, Kemp PD, Dörner J, Descalzi CA, Balocchi OA, García S (2013) Competitive strategies and growth of neighbouring Bromus valdivianus Phil. and Lolium perenne L. plants under water restriction. J Agron Crop Sci 199:449–459. doi: 10.1111/jac.12032 CrossRefGoogle Scholar
  46. Luo G et al (2012) Moderate grazing can promote aboveground primary production of grassland under water stress. Ecol Complex 11:126–136. doi: 10.1016/j.ecocom.2012.04.004 CrossRefGoogle Scholar
  47. McGlone CM, Sieg CH, Kolb TE, Nietupsky T (2012) Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability. Plant Ecol 213:445–457. doi: 10.2307/41429064 CrossRefGoogle Scholar
  48. Nagabhyru P, Dinkins R, Wood C, Bacon C, Schardl C (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127. doi: 10.1186/1471-2229-13-127 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nielsen SL, Enriquez S, Duarte CM, Sand-Jensen K (1996) Scaling maximum growth rates across photosynthetic organisms. Funct Ecol 10:167–175. doi: 10.2307/2389840 CrossRefGoogle Scholar
  50. Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265. doi: 10.1016/S0169-5347(98)01364-0 CrossRefPubMedGoogle Scholar
  51. Pérez-Harguindeguy N et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. doi: 10.1071/BT12225 CrossRefGoogle Scholar
  52. Rees M (2013) Competition on productivity gradients—what do we expect? Ecol Lett 16:291–298. doi: 10.1111/ele.12037 CrossRefPubMedGoogle Scholar
  53. Richardson MD, Hoveland CS, Bacon CW (1993) Photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Sci 33:145–149. doi: 10.2135/cropsci1993.0011183X003300010026x CrossRefGoogle Scholar
  54. Rúa MA, McCulley RL, Mitchell CE (2013) Fungal endophyte infection and host genetic background jointly modulate host response to an aphid-transmitted viral pathogen. J Ecol 101:1007–1018. doi: 10.1111/1365-2745.12106 CrossRefGoogle Scholar
  55. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi: 10.2307/3072232 CrossRefGoogle Scholar
  56. Schrauf GE, Cornaglia PS, Deregibus VA, Ríssola MG (1995) Improvement in germination behaviour of Paspalum dilatatum Poir. seeds under different pre-conditioning treatments. N Z J Agric Res 38:501–509. doi: 10.1080/00288233.1995.9513152 CrossRefGoogle Scholar
  57. Seager R, Tzanova A, Nakamura J (2009) Drought in the southeastern United States: causes, variability over the last millennium, and the potential for future hydroclimate change. J Clim 22:5021–5045. doi: 10.1175/2009JCLI2683.1 CrossRefGoogle Scholar
  58. Stuedemann JA, Hoveland CS (1988) Fescue endophyte: history and impact on animal agriculture. J Prod Agric 1:39–44. doi: 10.2134/jpa1988.0039 CrossRefGoogle Scholar
  59. Taylor SH, Hulme SP, Rees M, Ripley BS, Ian Woodward F, Osborne CP (2010) Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol 185:780–791. doi: 10.1111/j.1469-8137.2009.03102.x CrossRefPubMedGoogle Scholar
  60. Taylor SH, Ripley BS, Woodward FI, Osborne CP (2011) Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. Plant, Cell Environ 34:65–75. doi: 10.1111/j.1365-3040.2010.02226.x CrossRefGoogle Scholar
  61. Tilman D (1990) Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3–15. doi: 10.2307/3565355 CrossRefGoogle Scholar
  62. Tilman D (1994) Community diversity and succession: the roles of competition, dispersal, and habitat modification. In: Schulze E-D, Mooney H (eds) Biodiversity and ecosystem function, vol 99. Springer, Berlin Heidelberg New York, pp 327–344CrossRefGoogle Scholar
  63. Violle C, Pu Z, Jiang L (2010) Experimental demonstration of the importance of competition under disturbance. Proc Natl Acad Sci USA 107:12925–12929. doi: 10.1073/pnas.1000699107 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang Y, Long SP, Zhu X-G (2014) Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol 164:2231–2246. doi: 10.1104/pp.113.230284 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wetherald RT, Manabe S (2002) Simulation of hydrologic changes associated with global warming. J Geophys Res Atmos 107:4379. doi: 10.1029/2001JD001195 CrossRefGoogle Scholar
  66. Wise MJ, Abrahamson WG (2005) Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory. Oikos 109:417–428. doi: 10.2307/3548509 CrossRefGoogle Scholar
  67. Wise MJ, Abrahamson WG (2007) Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models. Am Nat 169:443–454. doi: 10.1086/512044 CrossRefPubMedGoogle Scholar
  68. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159. doi: 10.1016/j.copbio.2008.02.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph D. Napier
    • 1
    • 2
    Email author
  • Erin A. Mordecai
    • 1
    • 3
  • Robert W. Heckman
    • 1
  1. 1.Department of BiologyUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of BiologyStanford UniversityStanfordUSA

Personalised recommendations