Skip to main content
Log in

Plant nitrogen concentration and isotopic composition in residential lawns across seven US cities

Oecologia Aims and scope Submit manuscript

Abstract

Human drivers are often proposed to be stronger than biophysical drivers in influencing ecosystem structure and function in highly urbanized areas. In residential land cover, private yards are influenced by individual homeowner preferences and actions while also experiencing large-scale human and biophysical drivers. We studied plant nitrogen (%N) and N stable isotopic composition (δ15N) in residential yards and paired native ecosystems in seven cities across the US that span major ecological biomes and climatic regions: Baltimore, Boston, Los Angeles, Miami, Minneapolis-St. Paul, Phoenix, and Salt Lake City. We found that residential lawns in three cities had enriched plant δ15N (P < 0.03) and in six cities higher plant N (%) relative to the associated native ecosystems (P < 0.05). Plant δ15N was progressively depleted across a gradient of urban density classes in Baltimore and Boston (P < 0.05). Lawn fertilization was associated with depleted plant δ15N in Boston and Los Angeles (P < 0.05), and organic fertilizer additions were associated with enriched plant δ15N in Los Angeles and Salt Lake City (P < 0.04). Plant δ15N was significantly enriched as a function of housing age in Baltimore (r 2 = 0.27, P < 0.02), Boston (r 2 = 0.27, P < 0.01), and Los Angeles (r 2 = 0.34, P < 0.01). These patterns in plant δ15N and plant N (%) across these cities suggests that N sources to lawns, as well as greater rates of N cycling combined with subsequent N losses, may be important drivers of plant N dynamics in lawn ecosystems at the national scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New York

    Book  Google Scholar 

  • Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118(2):124–131

    Article  Google Scholar 

  • Bettez ND, Groffman PM (2013) Nitrogen deposition in and near an urban ecosystem. Environ Sci Tech 47:6047–6051

    Article  CAS  Google Scholar 

  • Bijoor NS, Czimczik CI, Pataki DE, Billings SA (2008) Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn. Global Change Bio 14:2119–2131

    Article  Google Scholar 

  • Bissonette JA (1999) Small sample size problems in wildlife ecology: a contingent analytical approach. Wildl Biol 5:65–71

    Google Scholar 

  • Boström B, Comstedt D, Ekbald A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153(1):89–98

    Article  PubMed  Google Scholar 

  • Carreiro MM, Tripler CE (2005) Forest remnants along urban-rural gradients: examining their potential for global change research. Ecosystems 8:568–582

    Article  Google Scholar 

  • Claritas (2008) PRIZM segment narratives. Nielsen (US) www.claritas.com/MyBestSegments/Default.jsp. Accessed 15 Nov 2014

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A et al (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  CAS  PubMed  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6(3):121–126

    Article  CAS  PubMed  Google Scholar 

  • Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands? Evidence from δ15N of soils. Oecologia 94(3):314–317

    Article  Google Scholar 

  • Felix JD, Elliott EM (2014) Isotopic composition of passively collected nitrogen dioxide emisions: vehicle, soil and livestock source signatures. Atmos Environ 92:359–366

    Article  CAS  Google Scholar 

  • Fraser JC, Bazuin JT, Band LE, Grove JM (2013) Covenants, cohesion, and community: the effects of neighborhood governance on lawn fertilization. Landsc Urban Plan 115:30–38

    Article  Google Scholar 

  • Gold AJ, Deragon WR, Sullivan WM, Lemunyon JL (1990) Nitrate-nitrogen losses to groundwater from rural and suburban land uses. J Soil Water Conserv 45:305–310

    Google Scholar 

  • Golubiewski NE (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl 16(2):555–571

    Article  PubMed  Google Scholar 

  • Gough CM, Elliott HL (2012) Lawn soil carbon storage in abandoned residential properties: an examination of ecosystem structure and function following partial human-natural decoupling. J Environ Managee 98:155–162

    Article  CAS  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  CAS  PubMed  Google Scholar 

  • Groffman PM, Law NL, Belt KT, Band LE, Fisher GT (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403

    CAS  Google Scholar 

  • Groffman PM, Cavender-Bares J, Bettez ND, Grove JM, Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson K, O’Neil-Dunne J, Ogden L, Pataki DE, Polsky C, Roy Chowdhury R, Steele MK (2014) Ecological homogenization of urban USA. Front Ecol Environ 12(1):74–81

    Article  Google Scholar 

  • Harrell FE, Dupont C et al (2014) Misc: Harrell miscellaneous. R package version 3.14-5. http://CRAN.R-project.org/package=Hmisc. Accessed 6 Nov 2014

  • Hobbie EA, Högberg P (2012) Tansley Review. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  CAS  PubMed  Google Scholar 

  • Högberg P (1997) Tansley review no. 95: 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Högberg P, Johannisson C, Yarwood S, Callesen I, Näsholm T, Myrold DD, Högberg MN (2011) Recovery of ecotmycorrhiza after ‘nitrogen saturation’ of a conifer forest. New Phytol 189:515–525

    Article  PubMed  Google Scholar 

  • Högberg P, Johannisson C, Högberg MN (2013) Is the high 15N natural abundance of trees in N-loaded forests caused by an internal ecosystem N isotope redistribution or a change in the ecosystem N isotope mass balance? Biogeochem. doi:10.1007/s10533-013-9873-x

    Google Scholar 

  • Hope D, Zhu W, Gries C, Oleson J, Kaye J, Grimm NB, Baker LA (2005) Spatial variation in soil inorganic nitrogen across an arid urban ecosystem. Urban Ecosyst 8:251–273

    Article  Google Scholar 

  • Huyler A, Chappelka AH, Prior SA, Somers GL (2014) Drivers of soil carbon in residential ‘pure lawns’ in Auburn, Alabama. Urban Ecosyst 17:205–219

    Article  Google Scholar 

  • Jenerete GD, Wu J, Grimm NB, Hope D (2006) Points, patches, and regions: scaling soil biogeochemical patterns in an urbanized arid ecosystem. Global Change Biol 12:1532–1544

    Article  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21(4):192–199

    Article  PubMed  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Malden, pp 375–449

    Chapter  Google Scholar 

  • Law NL, Band LE, Grove JM (2004) Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore County, MD. J Environ Plan Manage 47(5):737–755

    Article  Google Scholar 

  • Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu W-X, Baxter JW (2000) Atmospheric deposition to oak forests along an urban-rural gradient. Environ Sci Technol 34:4294–4300

    Article  CAS  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stats 18:50–60

    Article  Google Scholar 

  • Martini NF, Nelson KC, Hobbie SE, Baker LA (2015) Why “Feed the lawn”? Exploring the influences on residential turf grass fertilization in the Minneapolis-Saint Paul metropolitan area. Environ Behavior 47(2):158–183

    Article  Google Scholar 

  • McDonnell MJ (2011) The history of urban ecology: an ecologist’s perspective. In: Niemelä J, Breuste J, Guntenspergen G, McIntyre NE, Elmqvist T, James P (eds) Urban ecology. Oxford University Press, Oxford, pp 5–13

    Chapter  Google Scholar 

  • McDonnell MJ, Picket STA (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71(4):1232–1237

    Article  Google Scholar 

  • Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manage 36(3):426–438

    Article  PubMed  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • National Climatic Data Center (NCDC) (2014) National oceanic and atmospheric administration (NOAA) satellite and information service. 1981–2010 Climate normals. http://www.ncdc.noaa.gov/. Accessed 27 Feb 2015

  • Osmond DL, Hardy DH (2004) Characterization of turf practices in five North Carolina communities. J Environ Qual 33(2):565–575

    Article  CAS  PubMed  Google Scholar 

  • Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J et al (2006) Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–171

    Article  Google Scholar 

  • Pardo LH, McNulty SG, Boggs JL, Duke S (2007) Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US. Environ Pollut 149:293–302

    Article  CAS  PubMed  Google Scholar 

  • Pearson J, Wells DM, Seller KJ, Bennett A, Soares A, Woodall J, Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147:317–326

    Article  CAS  Google Scholar 

  • Petrovic AM (1990) The fate of nitrogenous fertilizers applied to turfgrass. J Environ Qual 19:1–14

    Article  CAS  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362

    Article  CAS  PubMed  Google Scholar 

  • Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR). R package. http://ftp.ussg.iu.edu/CRAN/. Accessed 28 Oct 2014

  • Pouyat RV, Groffman PM, Yesilonis I, Hernandez L (2003) Soil carbon pools and fluxes in urban ecosystems. In: Kimble JM, Heath LS, Birdsey RA, Lal R (eds) The potential of US forest soils to sequester carbon and mitigate the greenhouse effect. CRC, Boca Raton, pp 347–362

    Google Scholar 

  • Pouyat RV, Yesilonis ID, Golubiewski NE (2009) A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosyst 12:45–62

    Article  Google Scholar 

  • Qian YL, Bandaranayake W, Parton WJ, Mecham B, Harivandi MA, Mosier AR (2003) Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics: the CENTURY model simulation. J Environ Qual 32:1694–1700

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 20 Oct 2014

  • Raciti SM, Groffman PM, Fahey TJ (2008) Nitrogen retention in urban lawns and forests. Ecol Appl 18(7):1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Raciti SM, Groffman PM, Jenkins JC, Pouyat RV, Fahey TJ, Pickett STA, Cadenasso ML (2011) Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems 14:287–297

    Article  CAS  Google Scholar 

  • Rao P, Hutyra L, Raciti S, Templer P (2014) Atmospheric nitrogen inputs and losses along an urbanization gradient from Boston to Harvard Forest, MA. Biogeochem 121:299

    Article  Google Scholar 

  • Redling K, Elliott E, Bain D, Sherwell J (2013) Highway contributions to reactive nitrogen deposition: tracing the fate of vehicular NOx using stable isotopes and plant biomonitors. Biogeochem 116:261–274

    Article  CAS  Google Scholar 

  • Robbins P, Birkenholtz T (2003) Turfgrass revolution: measuring the expansion of the American lawn. Land Use Policy 20:181–194

    Article  Google Scholar 

  • Robbins P, Polderman A, Birkenholtz T (2001) Lawns and toxins: an ecology of the city. Cities 18(6):369–380

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162

    Article  PubMed  Google Scholar 

  • Saurer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R (2004) First detection of nitrogen from NOx in tree rings: a 15N/14N study near a motorway. Atmos Environ 38:2779–2787

    Article  CAS  Google Scholar 

  • Stiegler CJ, Richardson MD, Karcher DE, Roberts TL, Norman RJ (2013) Foliar absorption of various inorganic and organic nitrogen sources by creeping bentgrass. Crop Sci 53(3):1148–1152

    Article  CAS  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 102(12):4387–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend-Small A, Czimczik CI (2010) Carbon sequestration and greenhouse gas emissions in urban turf. Geophys Res Lett 37:L06707. doi:10.1029/2010GL042735

    CAS  Google Scholar 

  • US Census Bureau (2010) Annual estimates of the resident population: April 1, 2010 to July, 2013. Source: US Census Bureau, Population Division. Release date: March 2014. http://www.census.gov/population/metro/data/index.html. Accessed 24 Oct 2014

  • US Geological Survey (USGS) (2008) USGS global ecosystems data viewer. http://rmgsc.cr.usgs.gov/ecosystems/dataviewer.shtml. Accessed 24 Oct 2014

Download references

Acknowledgments

The authors thank Meghan Avolio, La’Shaye Ervin, William Borrowman, Moumita Kundu, and Barbara Uhl for field and laboratory assistance. This research was funded by a series of collaborative grants from the US National Science Foundation (EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320).

Author contribution statement

T. L. E. T. conducted laboratory and fieldwork, analyzed the data and wrote the manuscript. D. E. P., J. C.-B., P. M. G., S. J. H., J. B. H., S. E. H., C. N., and K. C. N. formulated the idea and developed methodology. J. L. M. conducted fieldwork. All authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. E. Trammell.

Additional information

Communicated by Jim Ehleringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trammell, T.L.E., Pataki, D.E., Cavender-Bares, J. et al. Plant nitrogen concentration and isotopic composition in residential lawns across seven US cities. Oecologia 181, 271–285 (2016). https://doi.org/10.1007/s00442-016-3566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3566-9

Keywords

Navigation