Advertisement

Oecologia

, Volume 181, Issue 1, pp 193–205 | Cite as

Environmental filtering determines metacommunity structure in wetland microcrustaceans

  • Stéphanie GascónEmail author
  • Ignasi Arranz
  • Miguel Cañedo-Argüelles
  • Alfonso Nebra
  • Albert Ruhí
  • Maria Rieradevall
  • Nuno Caiola
  • Jordi Sala
  • Carles Ibàñez
  • Xavier D. Quintana
  • Dani Boix
Community ecology – original research

Abstract

Metacommunity approaches are becoming popular when analyzing factors driving species distribution at the regional scale. However, until the popularization of the variation partitioning technique it was difficult to assess the main drivers of the observed patterns (spatial or environmental). Here we propose a new framework linking the emergence of different metacommunity structures (e.g., nested, Gleasonian, Clementsian) to spatial and environmental filters. This is a novel approach that provides a more profound analysis of how both drivers could lead to similar metacommunity structures. We tested this framework on 110 sites covering a strong environmental gradient (i.e., microcrustacean assemblages organized along a salinity gradient, from freshwater to brackish water wetlands). First we identified the metacommunity structure that better fitted these microcrustacean assemblages. Then, we used hierarchical variation partitioning to quantify the relative influences of environmental filters and the distance among wetlands on the identified structure. Our results showed that under strong environmental filtering metacommunity structures were non-random. We also noted that even passive dispersers, that are supposed to be poorly spatially filtered, showed spatial signals at a large geographical scale. However, some difficulties arose when inferring biotic interactions at finer-scale spatial signals. Overall, our study shows the potential of elements of metacommunity structure combined with variation partition techniques to detect environmental drivers and broadscale patterns of metacommunity structure, and that some caution is needed when interpreting finer-scale spatial signals.

Keywords

Moran eigenvector maps Salinity Copepoda Cladocera Ostracoda 

Notes

Acknowledgments

We would like to dedicate this paper to the memory of Dr. Maria Rieradevall, who was a passionate scientist and a beautiful person. We wish to thank the handling editor Dr. William Resetarits, and two anonymous reviewers, for constructive suggestions that improved the manuscript. Special thanks are due to Antoni Munné and Carolina Solà from the Catalan Water Agency for their encouragement and facilities while conducting this applied research. This work was financially supported by the Catalan Water Agency, the Ministerio de Ciencia e Innovación (CGL2011-23907), and the Generalitat de Catalunya (ref. 2014 SGR 484).

Author contribution statement

S. G., I. A., A. R., J. S., X. Q. and D. B. conceived the ideas; all authors participated in the data collection; S. G., I. A., and A. R. analyzed the results; S. G. wrote the first draft of the manuscript, and coordinated revisions. All authors contributed to the writing.

Supplementary material

442_2015_3540_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. Allen MR (2007) Measuring and modeling dispersal of adult zooplankton. Oecologia 153:135–143. doi: 10.1007/s00442-007-0704-4 CrossRefPubMedGoogle Scholar
  2. Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382. doi: 10.1007/bf00317508 CrossRefGoogle Scholar
  3. Attrill MJ, Rundle SD (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuar Coast Shelf Sci 55:929–936. doi: 10.1006/ecss.2002.1036 CrossRefGoogle Scholar
  4. Bagella S, Gascón S, Caria MC, Sala J, Mariani MA, Boix D (2010) Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds. Biodivers Conserv 19:1749–1768. doi: 10.1007/s10531-010-9801-5 CrossRefGoogle Scholar
  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  6. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefPubMedGoogle Scholar
  7. Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796CrossRefGoogle Scholar
  8. Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana XD (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69CrossRefGoogle Scholar
  9. Bonada N, Rieradevall M, Dallas H, Davis J, Day J, Figueroa R, Resh VH, Prat N (2008) Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biol 53:772–788. doi: 10.1111/j.1365-2427.2007.01940.x CrossRefGoogle Scholar
  10. Borcard D, Gillet F and Legendre P (2011) Numerical ecology with R. Use R! In: Gentleman R, Hornik K, Parmigiani GG (eds). Springer, Heidelberg Berlin New YorkGoogle Scholar
  11. Bradley TJ (2009) Animal osmoregulation. Oxford Animal Biology Series, Oxford University Press, OxfordGoogle Scholar
  12. Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J N Am Benthol Soc 30:310–327. doi: 10.1899/10-129.1 CrossRefGoogle Scholar
  13. Brucet S, Boix D, Gascón S, Sala J, Quintana XD, Badosa A, Søndergaard M, Lauridsen TL, Jeppesen E (2009) Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32:692–702CrossRefGoogle Scholar
  14. Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167. doi: 10.1016/j.envpol.2012.10.011 CrossRefPubMedGoogle Scholar
  15. Cañedo-Argüelles M, Boersma KS, Bogan MT, Olden JD, Phillipsen I, Schriever TA, Lytle DA, Ladle R (2015) Dispersal strength determines meta-community structure in a dendritic riverine network. J Biogeogr 42:778–790. doi: 10.1111/jbi.12457 CrossRefGoogle Scholar
  16. Cisneros LM, Fagan ME, Willig MR (2015) Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. J Anim Ecol 84:373–385. doi: 10.1111/1365-2656.12299 CrossRefPubMedGoogle Scholar
  17. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, WashingtonCrossRefGoogle Scholar
  18. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi: 10.1111/j.1461-0248.2005.00820.x CrossRefPubMedGoogle Scholar
  19. Dallas T (2013) Metacom: analysis of the elements of metacommunity structure. R package version 1.2, http://CRAN.R-project.org/package=metacom
  20. Dallas T, Presley SJ (2014) Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123:866–874. doi: 10.1111/oik.00707 CrossRefGoogle Scholar
  21. De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SA (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747. doi: 10.1111/j.1461-0248.2012.01794.x CrossRefPubMedGoogle Scholar
  22. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JD (eds) Ecology and evolution of communities. Belknap, Cambridge, pp 342–444Google Scholar
  23. Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122. doi: 10.2307/3237229 CrossRefGoogle Scholar
  24. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  25. Dray S, Legendre P and Blanchet G (2007) packfor: forward selection with permutation (Canoco p.46). R package version 0.0-7, https://r-forge.r-project.org/R/?group_id=195. Accessed 10 October 2011
  26. Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi: 10.1890/11-1183.1 CrossRefGoogle Scholar
  27. Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto PR (2014) Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–475. doi: 10.1111/j.1600-0587.2013.00527.x Google Scholar
  28. Gauch HG (1982) Noise-reduction by eigenvector ordinations. Ecology 63:1643–1649CrossRefGoogle Scholar
  29. Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26CrossRefGoogle Scholar
  30. Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, WashingtonGoogle Scholar
  31. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  32. Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613CrossRefPubMedGoogle Scholar
  33. Gutiérrez-Cánovas C, Millán A, Velasco J, Vaughan IP, Ormerod SJ (2013) Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecol Biogeogr 22:796–805. doi: 10.1111/geb.12060 CrossRefGoogle Scholar
  34. Hájek M, Roleček J, Cottenie K, Kintrová K, Horsák M, Poulíčková A, Hájková P, Fránková M, Dítě D (2011) Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. J Biogeogr 38:1683–1693. doi: 10.1111/j.1365-2699.2011.02503.x CrossRefGoogle Scholar
  35. Havel J, Shurin J (2004) Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49:1229–1238. doi: 10.4319/lo.2004.49.4_part_2.1229 CrossRefGoogle Scholar
  36. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biol 56:1703–1722. doi: 10.1111/j.1365-2427.2011.02610.x CrossRefGoogle Scholar
  37. Heino J, Alahuhta J (2015) Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J Anim Ecol 84:427–441. doi: 10.1111/1365-2656.12287 CrossRefPubMedGoogle Scholar
  38. Heino J, Nokela T, Soininen J, Tolkkinen M, Virtanen L, Virtanen R (2015) Elements of metacommunity structure and community-environment relationships in stream organisms. Freshwater Biol 60:973–988. doi: 10.1111/fwb.12556 CrossRefGoogle Scholar
  39. Henriques-Silva R, Lindo Z, Peres-Neto PR (2013) A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94:627–639CrossRefPubMedGoogle Scholar
  40. Holyoak M, Leibold MA, Mouquet N, Holt RD, Hoopes MF (2005) Metacommunities: A framework for large-scale community ecology. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago, Chicago, pp 1–31Google Scholar
  41. Incagnone G, Marrone F, Barone R, Robba L, Naselli-Flores L (2015) How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750:103–123. doi: 10.1007/s10750-014-2110-3 CrossRefGoogle Scholar
  42. Jeffries MJ (2003) Idiosyncratic relationships between pond invertebrates and environmental, temporal and patch-specific predictors of incidence. Ecography 26:311–324CrossRefGoogle Scholar
  43. Keith SA, Newton AC, Morecroft MD, Golicher DJ, Bullock JM (2011) Plant metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos 120:302–310. doi: 10.1111/j.1600-0706.2010.18775.x CrossRefGoogle Scholar
  44. Legendre P, Borcard D, Roberts DW (2012) Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93:1234–1240. doi: 10.1890/11-2028.1 CrossRefPubMedGoogle Scholar
  45. Leibold MA, Mikkelson GM (2002) Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237–250CrossRefGoogle Scholar
  46. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  47. Lewinsohn TM, Inácio Prado P, Jordano P, Bascompte J, Olesen JM (2006) Structure in plant–animal interaction assemblages. Oikos 113:174–184. doi: 10.1111/j.0030-1299.2006.14583.x CrossRefGoogle Scholar
  48. Lopez LCS, Gonçalves DA, Mantovani A, Rios RI (2002) Bromeliad ostracods pass through amphibian (Scinaxax perpusillus) and mammalian guts alive. Hydrobiologia 485:209–211. doi: 10.1023/a:1021315223774 CrossRefGoogle Scholar
  49. Louette G, De Meester L (2005) High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86:353–359CrossRefGoogle Scholar
  50. McAbendroth L, Foggo A, Rundle SD, Bilton DT (2005) Unravelling nestedness and spatial pattern in pond assemblages. J Anim Ecol 74:41–49CrossRefGoogle Scholar
  51. Mergeay J, De Meester L, Eggermont H, Verschuren D (2011) Priority effects and species sorting in a long paleoecological record of repeated community assembly through time. Ecology 92:2267–2275. doi: 10.1890/10-1645.1 CrossRefPubMedGoogle Scholar
  52. Meynard CN, Lavergne S, Boulangeat I, Garraud L, Van Es J, Mouquet N, Thuiller W, Gillman LN (2013) Disentangling the drivers of metacommunity structure across spatial scales. J Biogeogr 40:1560–1571. doi: 10.1111/jbi.12116 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nekola JC, White PS (1999) Special paper: the distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878CrossRefGoogle Scholar
  54. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH and Wagner H (2013) vegan: community ecology package. R package version 2.0-9, http://CRAN.R-project.org/package=vegan (Accessed 10 October 2011)
  55. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409CrossRefGoogle Scholar
  56. Poff NL, Pyne MI, Bledsoe BP, Cuhaciyan CC, Carlisle DM (2010) Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. J N Am Benthol Soc 29:1441–1458. doi: 10.1899/10-030.1 CrossRefGoogle Scholar
  57. Presley SJ, Willig MR (2010) Bat metacommunity structure on Caribbean islands and the role of endemics. Global Ecol Biogeogr 19:185–199. doi: 10.1111/j.1466-8238.2009.00505.x CrossRefGoogle Scholar
  58. Presley SJ, Higgins CL, Lopez-Gonzalez C, Stevens RD (2009) Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple ordination axes. Oecologia 160:781–793. doi: 10.1007/s00442-009-1341-x CrossRefPubMedGoogle Scholar
  59. Presley SJ, Higgins CL, Willig MR (2010) A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908–917. doi: 10.1111/j.1600-0706.2010.18544.x CrossRefGoogle Scholar
  60. R Development Core Team (2015) R: a language and environment for statistical computing, http://www.R-project.org/(Accessed 10 October 2011)
  61. Ruhí A, Chappuis E, Escoriza D, Jover M, Sala J, Boix D, Gascón S, Gacia E (2014) Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach. Hydrobiologia 723:25–39. doi: 10.1007/s10750-013-1514-9 CrossRefGoogle Scholar
  62. Sahuquillo M, Miracle MR (2013) The role of historic and climatic factors in the distribution of crustacean communities in Iberian Mediterranean ponds. Freshwater Biol 58:1251–1266. doi: 10.1111/fwb.12124 CrossRefGoogle Scholar
  63. Sohn IG (1996) Possible passive distribution of ostracodes by high-altitude winds. Micropaleontology 42:390–391CrossRefGoogle Scholar
  64. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12. doi: 10.1111/j.2006.0906-7590.04817.x CrossRefGoogle Scholar
  65. Sokol ER, Brown BL, Carey CC, Tornwall BM, Swan CM, Barrett JE (2015) Linking management to biodiversity in built ponds using metacommunity simulations. Ecol Model 296:36–45. doi: 10.1016/j.ecolmodel.2014.10.022 CrossRefGoogle Scholar
  66. Stone L, Roberts A (1992) Competitive exclusion, or species aggregation? Oecologia 91:419–424. doi: 10.1007/bf00317632 CrossRefGoogle Scholar
  67. Talling JF and Driver D (1963) Some problems in the estimation of chlorophyll a in phytoplankton. In: Doty MS (ed) Proceedings of the Conference on Primary Productivity Measurement, Marine and Freshwater. University of Hawaii, Honolulu. USA Atomic Energy Commission, Division of Technical Information TID 7633, Hawaii, pp 142–146Google Scholar
  68. Tilman D (1982) Resource competition and community structure. Princeton University, PrincetonGoogle Scholar
  69. Tornés E, Ruhí A (2013) Flow intermittency decreases nestedness and specialisation of diatom communities in Mediterranean rivers. Freshwater Biol 58:2555–2566. doi: 10.1111/fwb.12232 CrossRefGoogle Scholar
  70. Waterkeyn A, Grillas P, Vanschoenwinkel B, Brendonck L (2008) Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biol 53:1808–1822CrossRefGoogle Scholar
  71. Williams WD (2001) Anthropogenic salinisation of inland waters. Hydrobiologia 466:329–337CrossRefGoogle Scholar
  72. Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1997) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20. doi: 10.1007/s004420050348 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stéphanie Gascón
    • 1
    Email author
  • Ignasi Arranz
    • 1
    • 2
  • Miguel Cañedo-Argüelles
    • 2
    • 3
  • Alfonso Nebra
    • 4
  • Albert Ruhí
    • 1
    • 5
  • Maria Rieradevall
    • 3
    • 6
  • Nuno Caiola
    • 4
  • Jordi Sala
    • 1
  • Carles Ibàñez
    • 4
  • Xavier D. Quintana
    • 1
  • Dani Boix
    • 1
  1. 1.GRECO, Institute of Aquatic EcologyUniversity of GironaGironaSpain
  2. 2.BETA Research GroupUniversity of Vic-Central University of CataloniaCataloniaSpain
  3. 3.FEM (Freshwater Ecology and Management) Research GroupUniversity of BarcelonaBarcelonaSpain
  4. 4.IRTA Aquatic EcosystemsSant Carles de la RàpitaSpain
  5. 5.Global Institute of SustainabilityArizona State UniversityTempeUSA
  6. 6.IRBio (Institut de Recerca de Biodiversitat)University of BarcelonaBarcelonaSpain

Personalised recommendations