, Volume 181, Issue 4, pp 959–970 | Cite as

Effects of land use on taxonomic and functional diversity: a cross-taxon analysis in a Mediterranean landscape

  • Violeta Hevia
  • Carlos P. Carmona
  • Francisco M. Azcárate
  • Mario Torralba
  • Paloma Alcorlo
  • Rubén Ariño
  • Jorge Lozano
  • Sara Castro-Cobo
  • José A. González
Highlighted Student Research


Land-use change is the major driver of biodiversity loss. However, taxonomic diversity (TD) and functional diversity (FD) might respond differently to land-use change, and this response might also vary depending on the biotic group being analysed. In this study, we compare the TD and FD of four biotic groups (ants, birds, herbaceous, woody vegetation) among four land-use types that represent a gradient of land-use intensity in a Mediterranean landscape (Mediterranean shrublands, dehesas, mixed-pine forests, olive groves). Analyses were performed separately at two different spatial scales: the sampling unit scale and the site scale. Land-use intensity effects on TD and FD were quite different and highly varied among the four biotic groups, with no single clear pattern emerging that could be considered general for all organisms. Additive partitioning of species diversity revealed clear contrasting patterns between TD and FD in the percentage of variability observed at each spatial scale. While most variability in TD was found at the larger scales, irregardless of organism group and land-use type, most variability in FD was found at the smallest scale, indicating that species turnover among communities is much greater than functional trait turnover. Finally, we found that TD and FD did not vary consistently, but rather followed different trajectories that largely depended on the biotic group and the intensity of land-use transformation. Our results highlight that the relationship of land use with TD and FD is highly complex and context-dependent.


Biodiversity Diversity partitioning Functional traits Land-use intensity Spatial scale 



Financial support was received from the Spanish Ministry of Economy and Competitiveness (Project CGL2011-30266). Carlos P. Carmona was supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (TANDEM; Project ID 626392). Jorge Lozano was supported by a Prometeo Fellowship from the SENESCYT, a national agency for Education and Science of the Government of Ecuador. Special thanks to Ana P. García-Nieto for map design and to César A. López, Desiree Rivera, Pedro Zorrilla-Miras, and Jorge Ortega for field assistance. We also thank three anonymous reviewers for the comments of the previous version of the manuscript. We appreciate the use of data from the TRY initiative on plant traits ( The TRY initiative and database are hosted, developed and maintained by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The experiments comply with the current laws of the country (Spain) in which the experiments were performed.

Author contribution statement

VH, CPC, FMA, PA, and JAG designed experimental research, VH, CPC, FMA and JAG wrote the manuscript, FMA, MT and PA sampled, identified and measured functional traits of woody and herbaceous vegetation, VH, FMA, JAG, SCC and RA sampled and identified ants, SCC measured functional traits of ants, JAG, JL and VH sampled birds, CPC and VH performed statistical analyses.

Supplementary material

442_2015_3512_MOESM1_ESM.pdf (899 kb)
Supplementary material 1 (PDF 898 kb)
442_2015_3512_MOESM2_ESM.pdf (424 kb)
Supplementary material 2 (PDF 423 kb)
442_2015_3512_MOESM3_ESM.pdf (197 kb)
Supplementary material 3 (PDF 196 kb)


  1. Agencia Estatal de Meteorología (AEMET) (2012) Informe agrometeorológico y fenológico de la primavera de 2012. AEMET, Madrid. Available at: Accessed 2 June 2015
  2. Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18(8):834–843CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersen A (1997) Using ants as bioindicators: multiscale issues in ant community ecology. Ecol Soc 1:8Google Scholar
  4. Azcárate FM, Peco B (2012) Abandonment of grazing in a Mediterranean grassland area: consequences for ant assemblages. Insect Conserv Divers 5:279–288. doi: 10.1111/j.1752-4598.2011.00165.x CrossRefGoogle Scholar
  5. Azcárate FM, Seoane J, Castro S, Peco B (2013) Drove roads: keystone structures that promote ant diversity in Mediterranean forest landscapes. Acta Oecol 49:107–115. doi: 10.1016/j.actao.2013.03.011 CrossRefGoogle Scholar
  6. Benton TG, Bryant DM, Cole L, Crick HQP (2002) Linking agricultural practice to insect and bird populations: a historical study over three decades. J Appl Ecol 39:673–687CrossRefGoogle Scholar
  7. Blanca G, Cabezudo B, Cueto M, Fernández López C, Morales Torres C (2009) Flora Vascular de Andalucía Oriental, 4 vols. Consejería de Medio Ambiente, Junta de Andalucía, SevillaGoogle Scholar
  8. Breitbach N, Laube I, Steffan-Dewenter I, Böhning-Gaese K (2010) Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia 162:965–976CrossRefPubMedGoogle Scholar
  9. Carmona CP, Azcárate FM, de Bello F, Ollero HS, Lepš J, Peco B (2012) Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. J Appl Ecol 49:1084–1093. doi: 10.1111/j.1365-2664.2012.02193.x CrossRefGoogle Scholar
  10. Castroviejo S (2009) Flora ibérica: Plantaginaceae–Scrophulariaceae. Consejo Superior de Investigaciones Científicas, MadridGoogle Scholar
  11. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335CrossRefGoogle Scholar
  12. Cramp S, Perrins CM (eds) (1994) Handbook of the Birds of the Western Palearctic. Oxford University Press, OxfordGoogle Scholar
  13. De Bello F, Thuiller W, Lepš J, Choler P, Clément JC, Macek P, Sebastià MT, Lavorel S (2009) Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J Veg Sci 20:475–486CrossRefGoogle Scholar
  14. De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Souse JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893. doi: 10.1007/s10531-010-9850-9 CrossRefGoogle Scholar
  15. De Lima RF, Dallimer M, Atkinson PW, Barlow J (2013) Biodiversity and land-use change: understanding the complex responses of an endemic-rich bird assemblage. Divers Distrib 19:411–422CrossRefGoogle Scholar
  16. Dı́az S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi: 10.1016/S0169-5347(01)02283-2 CrossRefGoogle Scholar
  17. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. doi: 10.1073/pnas.0704716104 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Feld CK, Martins da Silva P, Paulo Sousa J, de Bello F, Bugter R, Grandin U, Hering D, Lavorel S, Mountford O, Pardo I, Pärtel M, Sandin L, Jones KB, Harrison P (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862–1871CrossRefGoogle Scholar
  19. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. doi: 10.1111/j.1461-0248.2008.01255.x CrossRefPubMedGoogle Scholar
  20. Gilroy JJ, Medina Uribe CA, Haugaasen T, Edwards DP (2015) Effect of scale on trait predictors of species responses to agriculture. Conserv Biol 29(2):463-472. doi: 10.1111/cobi.12422
  21. Gotelli NJ, Ellison AM (2002) Biogeography at a regional scale: determinants of ant species density in New England bogs and forests. Ecology 83:1604–1609CrossRefGoogle Scholar
  22. Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RP, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc Lond B 360:269–288CrossRefGoogle Scholar
  23. Gross KL, Willig MR, Gough L, Inouye R, Cox SB (2000) Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos 89:417–427CrossRefGoogle Scholar
  24. Hector A, Joshi J, Lawler S, Spehn EM, Wilby A (2001) Conservation implications of the link between biodiversity and ecosystem functioning. Oecologia 129:624–628CrossRefPubMedGoogle Scholar
  25. Hevia V, Azcárate FM, Oteros-Rozas E, González JA (2013) Exploring the role of transhumance drove roads on the conservation of ant diversity in Mediterranean agroecosystems. Biodivers Conserv 22:2567–2581. doi: 10.1007/s10531-013-0539-8 CrossRefGoogle Scholar
  26. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wrightet IJ (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935CrossRefGoogle Scholar
  27. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc Biol Sci 276:903–909CrossRefPubMedGoogle Scholar
  28. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305CrossRefPubMedGoogle Scholar
  29. Lavorel S, Storkey J, Bardgett RD, de Bello F, Berg MP, Le Roux X, Moretti M, Mulder C, Pakeman RJ, Díaz S, Harrington R (2013) A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J Veg Sci 24(5):942–948CrossRefGoogle Scholar
  30. Leps J, De Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  31. Malo JE, Suárez F (1995) Herbivorous mammals as seed dispersers in a Mediterranean dehesa. Oecologia 104:246–255. doi: 10.1007/BF00328589 CrossRefGoogle Scholar
  32. Mason NWH, de Bello F (2013) Functional diversity: a tool for answering challenging ecological questions. J Veg Sci 24:777–780. doi: 10.1111/jvs.12097 CrossRefGoogle Scholar
  33. Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr. doi: 10.1111/j.1466-8238.2010.00532.x Google Scholar
  34. McIntyre PB, Jones LE, Flecker AS, Vanni MJ (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci USA 104:4461–4466CrossRefPubMedPubMedCentralGoogle Scholar
  35. Milder JC, Lassoie JP, Bedford BL (2008) Conserving biodiversity and ecosystem function through limited development: an empirical evaluation. Conserv Biol 22:70–79CrossRefPubMedGoogle Scholar
  36. Moretti M, de Bello F, Ibanez S, Fontana S, Pizzatti GB, Dziock F, Rixen C, Lavorel S (2013) Linking traits between plants and invertebrate herbivores to track functional effects of land-use changes. J Veg Sci 24:949–962. doi: 10.1111/jvs.12022 CrossRefGoogle Scholar
  37. Mouillot D, Mason WHN, Dumay O, Wilson JB (2005) Functional regularity: a neglected aspect of functional diversity. Oecologia 142:353–359CrossRefPubMedGoogle Scholar
  38. Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579CrossRefGoogle Scholar
  39. Nagendra H, Reyers B, Lavorel S (2013) Impacts of land change on biodiversity: making the link to ecosystem services. Curr Opin Environ Sustain 5:503–508CrossRefGoogle Scholar
  40. Nash MS, Bradford DF, Franson SE, Neale AC, Whitford WG, Heggem DT (2004) Livestock grazing effects on ant communities in the eastern Mojave Desert, USA. Ecol Indic 4:199–213CrossRefGoogle Scholar
  41. Pereira HM, Navarro LM, Martins IS (2012) Global biodiversity change: the bad, the good, and the unknown. Annu Rev Environ Resour 37:25–50CrossRefGoogle Scholar
  42. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758CrossRefPubMedGoogle Scholar
  43. Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985CrossRefPubMedGoogle Scholar
  44. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188CrossRefPubMedGoogle Scholar
  45. Roig X, Espadaler X (2010) Propuesta de grupos funcionales de hormigas para la Península Ibérica y Baleares, y su uso como bioindicadores. Iberomyrmex 2:28–29Google Scholar
  46. Royal Botanic Gardens Kew (2015) Seed Information Database (SID). Version 7.1. Available from:
  47. Ruiz de la Torre J (2006) Flora mayor. Dirección General para la Biodiversidad. Ministerio de Medio Ambiente, MadridGoogle Scholar
  48. Symstad AJ, Chapin FS, Wall DH, Gross KL, Huenneke LF, Mittelbach GG, Peters DPC, Tilman D (2003) Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience 53:89CrossRefGoogle Scholar
  49. Team R Core (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  50. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302. doi: 10.1126/science.277.5330.1300 CrossRefGoogle Scholar
  51. Vandermeer J, Yitbarek S (2012) Self-organized spatial pattern determines biodiversity in spatial competition. J Theor Biol 300:48–56CrossRefPubMedGoogle Scholar
  52. Vandewalle M, Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Martins da Silva P, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19:2921–2947. doi: 10.1007/s10531-010-9798-9 CrossRefGoogle Scholar
  53. Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9CrossRefGoogle Scholar
  54. Verhulst J, Báldi A, Kleijn D (2004) Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agric Ecosyst Environ 104:465–473CrossRefGoogle Scholar
  55. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Violeta Hevia
    • 1
  • Carlos P. Carmona
    • 2
    • 3
  • Francisco M. Azcárate
    • 2
  • Mario Torralba
    • 4
  • Paloma Alcorlo
    • 1
  • Rubén Ariño
    • 1
  • Jorge Lozano
    • 5
  • Sara Castro-Cobo
    • 6
  • José A. González
    • 1
  1. 1.Social–Ecological Systems Laboratory, Department of EcologyUniversidad Autónoma de MadridMadridSpain
  2. 2.Terrestrial Ecology Group, Department of EcologyUniversidad Autónoma de MadridMadridSpain
  3. 3.Department of Botany, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  4. 4.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark
  5. 5.Departamento de Ciencias Naturales, Sección de Biología Básica y AplicadaUniversidad Técnica Particular de LojaLojaEcuador
  6. 6.Estación Biológica de DoñanaConsejo Superior de Investigaciones Científicas (CSIC)SevilleSpain

Personalised recommendations