, Volume 180, Issue 3, pp 785–796 | Cite as

A naturally heterogeneous landscape can effectively slow down the dispersal of aquatic microcrustaceans

  • Petr J. Juračka
  • Steven A. J. Declerck
  • Daniel Vondrák
  • Luboš Beran
  • Martin Černý
  • Adam Petrusek
Community ecology - Original research


Several studies have suggested that aquatic microcrustaceans are relatively efficient dispersers in a variety of landscapes, whereas others have indicated dispersal limitation at large spatial scales or under specific circumstances. Based on a survey of a set of recently created ponds in an area of approximately 18 × 25 km, we found multiple indications of dispersal limitation affecting the community assembly of microcrustacean communities. Spatial patterns in the community composition were better explained by the geomorphological structure of the landscape than by mere geographic distances. This suggests that ridges separating the network of valleys act as dispersal barriers, and as such may channel the dispersal routes of the studied taxa and, likely, also of their animal vectors. Dispersal limitation was further supported by a strong positive relationship between species richness and the abundance of neighboring water bodies, suggesting that isolation affects colonization rates. Finally, the apparent dispersal limitation of microcrustaceans is further corroborated by the observation of low colonization rates in newly dug experimental ponds in the study area.


Zooplankton dispersal Dispersal limitation Metacommunity ecology Microcrustaceans Dispersal barriers 



M. Šorf, J. Hotový and B. Nová helped in the field, J. Fott, V. Sacherová, M. Bláha, and M. Šorf during species determination, Z. Juračková, M. Lulay and J. Vojta with assessing the spatial distribution and maps. Statistical analyses could not have been done without the important advice of P. Keil and V. Jarošík. Predator taxa—true bugs, dragonflies and aquatic beetles—were identified by the following specialists: P. Kment, T. Soldán, J. Dobiáš, D. Boukal, J. Klecka and T. Ditrich. We thank R. Symonová for her useful advice on ostracod identification. Two anonymous reviewers and J. Shurin provided useful comments to previous versions of the manuscript. The study was funded by the EuroCORES/EuroDIVERSITY project BIOPOOL (supported through the Czech Science Foundation Project No. DIV/06/E007), the Charles University in Prague (SVV 260198).

Author contribution statement

LB and AP originally formulated the idea. PJJ and LB conducted the fieldwork. DV and MČ conducted the field experiment. PJJ and DV analyzed the samples. PJJ, SAJD and AP proceeded the statistical analyses. PJJ, AP and SAJD wrote the manuscript.

Supplementary material

442_2015_3501_MOESM1_ESM.pdf (678 kb)
Supplementary material 1 (PDF 678 kb)


  1. Alahuhta J, Johnson LB, Olker J, Heino J (2014) Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecol Complex 20:61–68. doi: 10.1016/j.ecocom.2014.08.003 CrossRefGoogle Scholar
  2. Allen PE, Dodson SI (2011) Land use and ostracod community structure. Hydrobiologia 668:203–219. doi: 10.1007/s10750-011-0711-7 CrossRefGoogle Scholar
  3. Allen MR, VanDyke JN, Cáceres CE (2011) Metacommunity assembly and sorting in newly formed lake communities. Ecology 92:269–275. doi: 10.1890/10-0522.1 CrossRefPubMedGoogle Scholar
  4. Amoros C (1984) Crustacés Cladocères. Bulletin mensuel de la Société Linnéenne de Lyon 53:72–145Google Scholar
  5. Angeler DG, Alvarez-Cobelas M (2005) Island biogeography and landscape structure: integrating ecological concepts in a landscape perspective of anthropogenic impacts in temporary wetlands. Environ Pollut 138:420–424. doi: 10.1016/j.envpol.2005.04.020 CrossRefPubMedGoogle Scholar
  6. Anusa A, Ndagurwa HGT, Magadza CHD (2012) The influence of pool size on species diversity and water chemistry in temporary rock pools on Domboshawa Mountain, northern Zimbabwe. Afr J Aquat Sci 37:89–99. doi: 10.2989/16085914.2012.666378 CrossRefGoogle Scholar
  7. Auffret AG, Plue J (2014) Scale-dependent diversity effects of seed dispersal by a wild herbivore in fragmented grasslands. Oecologia 175:305–313. doi: 10.1007/s00442-014-2897-7 CrossRefPubMedGoogle Scholar
  8. Beisner BE, Peres-Neto PR, Lindstrom ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991. doi:10.1890/0012-9658(2006)87[2985:troeas];2CrossRefPubMedGoogle Scholar
  9. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. doi: 10.1079/BER2004350 CrossRefPubMedGoogle Scholar
  10. Beran L et al (1999) Plán péče o chráněnou krajinnou oblast Kokořínsko—Mělník: Správa chráněných krajinných oblastí ČR—Správa CHKO KokořínskoGoogle Scholar
  11. Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796. doi: 10.1046/j.1461-0248.2003.00486.x CrossRefGoogle Scholar
  12. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  13. Braun-Blanquet J, Conard HS, Fuller GD (1932) Plant sociology; the study of plant communities. McGraw-Hill, New YorkGoogle Scholar
  14. Brunet J, Valtinat K, Mayr ML, Felton A, Lindbladh M, Bruun HH (2011) Understory succession in post-agricultural oak forests: habitat fragmentation affects forest specialists and generalists differently. For Ecol Manag 262:1863–1871. doi: 10.1016/j.foreco.2011.08.007 CrossRefGoogle Scholar
  15. Cacéres CE, Soluk DA (2002) Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131:402–408. doi: 10.1007/s00442-002-0897-5 CrossRefGoogle Scholar
  16. Cohen GM, Shurin JB (2003) Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103:603–617. doi: 10.1034/j.1600-0706.2003.12660.x CrossRefGoogle Scholar
  17. Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1–12. doi: 10.2307/5503 CrossRefGoogle Scholar
  18. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  19. Davidson TA, Mackay AW, Wolski P, Mazebedi R, Murray-Hudson M, Todd M (2012) Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed, sub-tropical wetland. Freshw Biol 57:1253–1265. doi: 10.1111/j.1365-2427.2012.02795.x CrossRefGoogle Scholar
  20. De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SAJ (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organism. Ecol Lett 15:740–747. doi: 10.1111/j.1461-0248.2012.01794.x CrossRefPubMedGoogle Scholar
  21. De Meester L, Gómez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol 23:121–135. doi: 10.1016/S1146-609X(02)01145-1 CrossRefGoogle Scholar
  22. Declerck SAJ, Vanderstukken M, Pals A, Muylaert K, De Meester L (2007) Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88:2199–2210. doi: 10.1890/07-0048.1 CrossRefPubMedGoogle Scholar
  23. Declerck SAJ, Bakker ES, van Lith B, Kersbergen A, Van Donk E (2011a) Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic Appl Ecol 12:466–475. doi: 10.1016/j.baae.2011.05.001 CrossRefGoogle Scholar
  24. Declerck SAJ, Coronel JS, Legendre P, Brendonck L (2011b) Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography 34:296–305. doi: 10.1111/j.1600-0587.2010.06462.x CrossRefGoogle Scholar
  25. Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210. doi: 10.1111/j.1600-0706.2011.19563.x CrossRefGoogle Scholar
  26. Einsle U (1996) Copepoda: Cyclopoida: genera Cyclops, Megacyclops. SPB, AmsterdamGoogle Scholar
  27. Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol Evol Syst 14:131–152. doi: 10.1016/j.ppees.2011.10.001 CrossRefGoogle Scholar
  28. Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494. doi: 10.1046/j.1365-2427.2002.00829.x CrossRefGoogle Scholar
  29. Flößner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys, LeidenGoogle Scholar
  30. Frisch D, Green AJ (2007) Copepods come in first: rapid colonization of new temporary ponds. Archiv Hydrobiol 168:289–297. doi: 10.1127/1863-9135/2007/0168-0289 CrossRefGoogle Scholar
  31. Frisch D, Moreno-Ostos E, Green AJ (2006) Species richness and distribution of copepods and cladocerans and their relation to hydroperiod and other environmental variables in Doñana, south-west Spain. Hydrobiologia 556:327–340. doi: 10.1007/s10750-005-1305-z CrossRefGoogle Scholar
  32. Frisch D, Cottenie K, Badosa A, Green AJ (2012) Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS ONE 7:e40205. doi: 10.1371/journal.pone.0040205 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? J Appl Ecol 47:1071–1082. doi: 10.1111/j.1365-2664.2010.01861.x CrossRefGoogle Scholar
  34. Gonçalves-Souza T, Romero GQ, Cottenie K (2014) Metacommunity versus biogeography: a case study of two groups of Neotropical vegetation-dwelling arthropods. PLoS ONE 9:e115137. doi: 10.1371/journal.pone.0115137 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Green AJ, Figuerola J, Sánchez MI (2002) Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecol 23:177–189. doi: 10.1016/S1146-609X(02)01149-9 CrossRefGoogle Scholar
  36. Green AJ, Frisch D, Michot TC, Allain LK, Barrow WC (2013) Endozoochory of seeds and invertebrates by migratory waterbirds in Oklahoma, USA. Limnetica 32:39–46Google Scholar
  37. Hamrová E, Krajíček M, Karanovic T, Černý M, Petrusek A (2012) Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes lakes. Zool J Linn Soc Lond 166:754–767. doi: 10.1111/j.1096-3642.2012.00864.x CrossRefGoogle Scholar
  38. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49. doi: 10.1038/23876 CrossRefGoogle Scholar
  39. Jäger IS, Hölker F, Flöder S, Walz N (2011) Impact of Chaoborus flavicans—predation on the zooplankton in a mesotrophic lake—a three year study. Int Rev Hydrobiol 96:191–208. doi: 10.1002/iroh.201011253 CrossRefGoogle Scholar
  40. Jenkins DG (1995) Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia 313:15–20. doi: 10.1007/BF00025926 CrossRefGoogle Scholar
  41. Jenkins DG, Buikema AL Jr (1998) Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecol Monogr 68:421–443. doi:10.1890/0012-9615(1998)068[0421:DSCDIS]2.0.CO;2CrossRefGoogle Scholar
  42. Jiménez JJ, Decaëns T, Lavelle P, Rossi JP (2014) Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecol 14:26. doi: 10.1186/s12898-014-0026-4 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Juračka PJ, Kořínek V, Petrusek A (2010) A new Central European species of the Daphnia curvirostris complex, Daphnia hrbaceki sp. nov. (Cladocera, Daphniidae). Zootaxa 2718:1–22Google Scholar
  44. Kappes H, Tackenberg O, Haase P (2014) Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat Ecol 48:73–83. doi: 10.1007/s10452-013-9467-7 CrossRefGoogle Scholar
  45. Kopáček J, Hejzlar J (1993) Semi-micro determination of total phosporus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183. doi: 10.1080/03067319308045987 CrossRefGoogle Scholar
  46. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2CrossRefGoogle Scholar
  47. Leibold MA, Norberg J (2004) Biodiversity in metacommunities: plankton as complex adaptive systems? Limnol Oceanogr 49:1278–1289. doi: 10.4319/lo.2004.49.4_part_2.1278 CrossRefGoogle Scholar
  48. Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi: 10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  49. Lindo Z, Winchester NN (2009) Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160:817–825. doi: 10.1007/s00442-009-1348-3 CrossRefPubMedGoogle Scholar
  50. Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182. doi: 10.1111/j.2006.0906-7590.04348.x CrossRefGoogle Scholar
  51. Louette G, De Meester L (2005) High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86:353–359. doi: 10.1890/04-0403 CrossRefGoogle Scholar
  52. Louette G, Vanoverbeke J, Ortells R, De Meester L (2007) The founding mothers: the genetic structure of newly established Daphnia populations. Oikos 116:728–741. doi: 10.1111/j.0030-1299.2007.15664.x CrossRefGoogle Scholar
  53. Louette G, De Meester L, Declerck SAJ (2008) Assembly of zooplankton communities in newly created ponds. Freshw Biol 53:2309–2320. doi: 10.1111/j.1365-2427.2008.02052.x Google Scholar
  54. Luecke C, Litt AH (1987) Effects of predation by Chaoborus flavicans on crustacean zooplankton of Lake Lenore, Washington. Freshw Biol 18:185–192. doi: 10.1111/j.1365-2427.1987.tb01306.x CrossRefGoogle Scholar
  55. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  56. Maguire B (1963) The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecol Monogr 33:161–185. doi: 10.2307/1948560 CrossRefGoogle Scholar
  57. March F, Bass D (1995) Application of island biogeography theory to temporary pools. J Freshw Ecol 10:83–85. doi: 10.1080/02705060.1995.9663420 CrossRefGoogle Scholar
  58. Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum, HeidelbergGoogle Scholar
  59. Michels E, Cottenie K, Neys L, Meester L (2001) Zooplankton on the move: first results on the quantification of dispersal in a set of interconnected ponds. Hydrobiologia 442:117–126. doi: 10.1023/A:1017549416362 CrossRefGoogle Scholar
  60. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 7:278–285. doi: 10.1016/S0169-5347(00)01874-7 CrossRefGoogle Scholar
  61. Ng ISY, Carr CM, Cottenie K (2009) Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619:133–143. doi: 10.1007/s10750-008-9605-8 CrossRefGoogle Scholar
  62. Oksanen J et al (2011) Vegan: community ecology package. R package, version 1.17-11.
  63. Omesová M (2006) Perloočky a klanonožci Cladocera et Copepoda, Crustacea CHKO Kokořínsko Cladocerans and copepods Crustacea of Kokořínsko Protected Landscape Area. Bohemia centralis 27:167–177 (in Czech)Google Scholar
  64. Padial AA, Ceschin F, Declerck SAJ, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues L, Luzia CR, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9:e111227. doi: 10.1371/journal.pone.0111227 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  66. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2CrossRefPubMedGoogle Scholar
  67. Proctor VW (1964) Viability of crustacean eggs recovered from ducks. Ecology 45:656–658. doi: 10.2307/1936124 CrossRefGoogle Scholar
  68. Ripley B (2011) Tree: classification and regression trees. R package version 1.0-26Google Scholar
  69. Schlichting HE Jr, Sides SL (1969) The passive transport of aquatic microorganisms by selected hemiptera. J Ecol 57:759–764. doi: 10.2307/2258497 CrossRefGoogle Scholar
  70. Schulz G, Siqueira T, Stefan G, de Oliveira Roque F (2012) Passive and active dispersers respond similarly to environmental and spatial processes: an example from metacommunity dynamics of tree hole invertebrates. Fundam Appl Limnol 181:315–326. doi: 10.1127/1863-9135/2012/0365 CrossRefGoogle Scholar
  71. Sciullo L, Kolasa J (2012) Linking local community structure to the dispersal of aquatic invertebrate species in a rock pool metacommunity. Community Ecol 13:203–212. doi: 10.1556/ComEc.13.2012.2.10 CrossRefGoogle Scholar
  72. Shiel RJ, Green JD, Nielsen DL (1998) Floodplain biodiversity: why are there so many species? Hydrobiologia 387:39–46. doi: 10.1023/A:1017056802001 CrossRefGoogle Scholar
  73. Shurin JB (2001) Interactive effects of predation and dispersal on zooplankton communities. Ecology 82:3404–3416. doi:10.1890/0012-9658(2001)082[3404:IEOPAD]2.0.CO;2CrossRefGoogle Scholar
  74. Shurin JB, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159:151–159. doi: 10.1007/s00442-008-1174-z CrossRefPubMedGoogle Scholar
  75. Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655. doi: 10.1111/j.1600-0587.2009.06105.x CrossRefGoogle Scholar
  76. Soininen J (2014) A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95:3284–3292. doi: 10.1890/13-2228.1 CrossRefGoogle Scholar
  77. Soininen J, Kokocinski M, Estlander S, Kotanen J, Heino J (2007) Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14:146–154. doi:10.2980/1195-6860(2007)14[146:NNADOP]2.0.CO;2CrossRefGoogle Scholar
  78. Soons MB, Ozinga WA (2005) How important is long-distance seed dispersal for the regional survival of plantspecies? Divers Distrib 11:165–172. doi: 10.1111/j.1366-9516.2005.00148.x CrossRefGoogle Scholar
  79. Šrámek-Hušek R (1953) Naši klanonožci [Our copepods] (in Czech), Naše vojsko edn. Nakladatelství československé, PrahaGoogle Scholar
  80. Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice: 2001–2003. Aventinum, PrahaGoogle Scholar
  81. Van de Meutter F, Stoks R, De Meester L (2008) Size-selective dispersal of Daphnia resting eggs by backswimmers (Notonecta maculata). Biol Lett 4:494–496. doi: 10.1098/rsbl.2008.0323 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Vanschoenwinkel B, Gielen S, Vandewaerde H, Seaman M, Brendonck L (2008a) Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31:567–577. doi: 10.1111/j.0906-7590.2008.05442.x CrossRefGoogle Scholar
  83. Vanschoenwinkel B, Waterkeyn A, Vandecaetsbeek T, Pineau O, Grillas P, Brendonck L (2008b) Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshw Biol 53:2264–2273. doi: 10.1111/j.1365-2427.2008.02071.x Google Scholar
  84. Verreydt D, De Meester L, Decaestecker E, Villena MJ, Van Der Gucht K, Vannormelingen P, Vyverman W, Declerck SAJ (2012) Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecol Lett 15:218–226. doi: 10.1111/j.1461-0248.2011.01728.x CrossRefPubMedGoogle Scholar
  85. Viana DS et al (2014) Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshw Biol 59:2096–2106. doi: 10.1111/fwb.12410 CrossRefGoogle Scholar
  86. Waterkeyn A, Pineau O, Grillas P, Brendonck L (2010) Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coypus (Rodentia, Mammalia) in Southern France. Hydrobiologia 654:267–271. doi: 10.1007/s10750-010-0388-3 CrossRefGoogle Scholar
  87. Yan ND, Keller W, MacIsaac HJ, McEachern LJ (1991) Regulation of zooplankton community structure of an acidified lake by Chaoborus. Ecol Appl 1:52–65. doi: 10.2307/1941847 CrossRefGoogle Scholar
  88. Zhai M, Nováček O, Výravský V, Syrovátka V, Bojková J, Helešic J (2015) Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745:225–239. doi: 10.1007/s10750-014-2104-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Petr J. Juračka
    • 1
  • Steven A. J. Declerck
    • 2
  • Daniel Vondrák
    • 1
    • 4
  • Luboš Beran
    • 3
  • Martin Černý
    • 1
  • Adam Petrusek
    • 1
  1. 1.Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Netherlands Institute of EcologyWageningenThe Netherlands
  3. 3.Agency for Nature Protection and Landscape Conservation of the Czech RepublicKokořínsko - Máchův kraj Protected Landscape Area AdministrationMělníkCzech Republic
  4. 4.Faculty of Science, Institute for Environmental StudiesCharles University in PraguePrague 2Czech Republic

Personalised recommendations