Advertisement

Oecologia

, Volume 180, Issue 2, pp 567–579 | Cite as

Dietary and taxonomic controls on incorporation of microbial carbon and phosphorus by detritivorous caddisflies

  • Halvor M. Halvorson
  • Grant White
  • J. Thad Scott
  • Michelle A. Evans-White
Ecosystem ecology - Original research

Abstract

Heterotrophic microbes on detritus play critical roles in the nutrition of detritivorous animals, yet few studies have examined factors controlling the acquisition of microbial nutrients toward detritivore growth, which is termed “incorporation". Here, we assessed effects of detrital substrate identity (leaf type), background nutrients, and detritivore species identity on detritivore incorporation of microbial carbon (C) and phosphorus (P) in leaf litter diets. We fed oak and maple litter conditioned under two nutrient concentrations (50 or 500 µg P L−1) to the detritivorous caddisfly larvae Ironoquia spp., Lepidostoma spp., and Pycnopsyche lepida and used the radioisotopes 14C as glucose and 33P as phosphate to dually trace incorporation of microbial C and P by caddisflies. Incorporation efficiencies of microbial C (mean ± SE = 12.3 ± 1.3 %) were one order of magnitude higher than gross growth efficiencies for bulk detrital C from recent studies (1.05 ± 0.08 %). Litter type did not affect incorporation of microbial nutrients; however, caddisflies incorporated microbial P 11 % less efficiently when fed litter from the higher P concentration. Two lower body C:P species (Pycnopsyche and Ironoquia) exhibited 9.9 and 7.1 % greater microbial C and 19.0 and 17.7 % greater microbial P incorporation efficiencies, respectively, than the higher body C:P species (Lepidostoma). Our findings support ecological stoichiometry theory on post-ingestive regulation that animals fed lower C:P diets should reduce P incorporation efficiency due to excess diet P or alleviation of P-limited growth, and that lower C:P species must incorporate dietary C and P more efficiently to support fast growth of P-rich tissues.

Keywords

Detritivores Leaf type Nutrient enrichment Ecological stoichiometry Radioisotopes 

Notes

Acknowledgments

The National Science Foundation (DEB 1020722; BIO REU 1063067 and 1359188) and the University of Arkansas Honors College provided funding for this research. The authors would like to thank Brad Austin, Ayla Smartt, Kayla Sayre, Erin Scott, Erin Grantz, Jason Ramey, Delaney Hall, Amanda Eddy, Katharine Stewart, Andrew Sanders, Sally Entrekin, Chris Fuller, Dan Magoulick, Steve Beaupre, Duane Wolf, Ralph Henry, Julia Tchakhalian, and two anonymous reviewers for input and assistance. Halvor Halvorson was supported by a Doctoral Academy Fellowship at the University of Arkansas.

Author contribution statement

J. T. S. and M. A. E.-W. formulated the original idea; H. M. H. and M. A. E.-W. designed experiments; and H. M. H. and G. W. performed experiments and conducted statistical analysis. H. M. H. and M. A. E.-W. wrote the manuscript, and all authors provided editorial advice.

Supplementary material

442_2015_3464_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1949 kb)

References

  1. American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association, WashingtonGoogle Scholar
  2. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37. doi: 10.1007/Bf00378236 CrossRefGoogle Scholar
  3. Back JA, King RS (2013) Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshwater Sci 32:837–848. doi: 10.1899/12-181.1 CrossRefGoogle Scholar
  4. Baldy V, Chauvet E, Charcosset JY, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–36. doi: 10.3354/Ame028025 CrossRefGoogle Scholar
  5. Bärlocher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91:83–94. doi: 10.1111/j.1095-8339.1985.tb01137.x CrossRefGoogle Scholar
  6. Bärlocher F, Porter CW (1986) Digestive enzymes and feeding strategies of three stream invertebrates. J North Am Benthol Soc 5:58–66. doi: 10.2307/1467747 CrossRefGoogle Scholar
  7. Canhoto C, Graça MAS (2006) Digestive tract and leaf processing capacity of the stream invertebrate Tipula lateralis. Can J Zool 84:1087–1095. doi: 10.1139/Z06-092 CrossRefGoogle Scholar
  8. Cheever BM, Kratzer EB, Webster JR (2012) Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Sci 31:133–147. doi: 10.1899/11-060.1 CrossRefGoogle Scholar
  9. Cheever BM, Webster JR, Bilger EE, Thomas SA (2013) The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94:1614–1625. doi: 10.1890/12-1339.1 CrossRefPubMedGoogle Scholar
  10. Chung N, Suberkropp K (2009) Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae). Freshwater Biol 54:2212–2224. doi: 10.1111/j.1365-2427.2009.02260.x CrossRefGoogle Scholar
  11. Cothran RD, Stoler AB, Relyea RA (2014) Leaves and litterbugs: how litter quality affects amphipod life-history and sexually selected traits. Freshwater Sci 33:812–819. doi: 10.1086/677214 CrossRefGoogle Scholar
  12. Cross WF, Wallace JB, Rosemond AD, Eggert SL (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565. doi:10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2Google Scholar
  13. Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88:2563–2575. doi: 10.1890/06-1348.1 CrossRefPubMedGoogle Scholar
  14. Cummins KW (1973) Trophic relations of aquatic insects. Annu Rev Entomol 18:183–206. doi: 10.1146/annurev.en.18.010173.001151 CrossRefGoogle Scholar
  15. Danger M, Chauvet E (2013) Elemental composition and degree of homeostasis of fungi: are aquatic hyphomycetes more like metazoans, bacteria or plants? Fungal Ecol 6:453–457. doi: 10.1016/j.funeco.2013.05.007 CrossRefGoogle Scholar
  16. Danger M, Funck JA, Devin S, Heberle J, Felten V (2013) Phosphorus content in detritus controls life-history traits of a detritivore. Funct Ecol 27:807–815. doi: 10.1111/1365-2435.12079 CrossRefGoogle Scholar
  17. Dodds WK, Collins SM, Hamilton SK et al (2014) You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. Ecology 95:2757–2767. doi: 10.1890/13-2276.1 CrossRefGoogle Scholar
  18. Duhamel S, Zeman F, Moutin T (2006) A dual-labeling method for the simultaneous measurement of dissolved inorganic carbon and phosphate uptake by marine planktonic species. Limnol Oceanogr Meth 4:416–425. doi: 10.4319/lom.2006.4.416 CrossRefGoogle Scholar
  19. Elser JJ, Acharya K, Kyle M et al (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943. doi: 10.1046/j.1461-0248.2003.00518.x CrossRefGoogle Scholar
  20. Enriquez S, Duarte CM, Sandjensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471. doi: 10.1007/Bf00566960 CrossRefGoogle Scholar
  21. Evans-White MA, Dodds WK, Huggins DG, Baker DS (2009) Thresholds in macroinvertebrate biodiversity and stoichiometry across water-quality gradients in Central Plains (USA) streams. J North Am Benthol Soc 28:855–868. doi: 10.1899/08-113.1 CrossRefGoogle Scholar
  22. Fanin N, Fromin N, Buatois B, Hattenschwiler S (2013) An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecol Lett 16:764–772. doi: 10.1111/Ele.12108 CrossRefPubMedGoogle Scholar
  23. Ferrão-Filho AD, Tessier AJ, DeMott WR (2007) Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: testing stoichiometric theory and the growth rate hypothesis. Limnol Oceanogr 52:407–415. doi: 10.4319/lo.2007.52.1.0407 CrossRefGoogle Scholar
  24. Findlay S, Meyer JL, Smith PJ (1986a) Contribution of fungal biomass to the diet of a freshwater isopod (Lirceus sp.). Freshwater Biol 16:377–385. doi: 10.1111/j.1365-2427.1986.tb00978.x CrossRefGoogle Scholar
  25. Findlay S, Meyer JL, Smith PJ (1986b) Incorporation of microbial biomass by Peltoperla sp. (Plecoptera) and Tipula sp. (Diptera). J North Am Benthol Soc 5:306–310. doi: 10.2307/1467483 CrossRefGoogle Scholar
  26. Findlay S, Tank J, Dye S et al (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecol 43:55–66. doi: 10.1007/10.1007/S00248-001-1020-X CrossRefGoogle Scholar
  27. Frost PC, Elser JJ (2002) Growth responses of littoral mayflies to the phosphorus content of their food. Ecol Lett 5:232–240. doi: 10.1046/j.1461-0248.2002.00307.x CrossRefGoogle Scholar
  28. Frost PC, Benstead JP, Cross WF et al (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Lett 9:774–779. doi: 10.1111/j.1461-0248.2006.00919.x CrossRefPubMedGoogle Scholar
  29. Fuller CL, Evans-White MA, Entrekin SA (2015) Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry. Oecologia 177:837–848. doi: 10.1007/s00442-014-3154-9 CrossRefPubMedGoogle Scholar
  30. Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75:1807–1817. doi: 10.2307/1939639 CrossRefGoogle Scholar
  31. González AL, Romero GQ, Srivastava DS (2014) Detrital nutrient content determines growth rate and elemental composition of bromeliad-dwelling insects. Freshwater Biol 59:737–747. doi: 10.1111/fwb.12300 CrossRefGoogle Scholar
  32. Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biol 46:947–957. doi: 10.1046/j.1365-2427.2001.00729.x CrossRefGoogle Scholar
  33. Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biol 48:123–134. doi: 10.1046/j.1365-2427.2003.00985.x CrossRefGoogle Scholar
  34. Hall RO, Meyer JL (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79:1995–2012. doi:10.1890/0012-9658(1998)079[1995:Ttsobi]2.0.Co;2Google Scholar
  35. Halvorson HM, Fuller C, Entrekin SA, Evans-White MA (2015a) Dietary influences on production, stoichiometry and decomposition of particulate wastes from shredders. Freshwater Biol 60:466–478. doi: 10.1111/fwb.12462 CrossRefGoogle Scholar
  36. Halvorson HM, Scott JT, Sanders AJ, Evans-White MA (2015b) A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshwater Sci 34:508–518. doi: 10.1086/680724 CrossRefGoogle Scholar
  37. Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038. doi: 10.2307/3071911 CrossRefGoogle Scholar
  38. Hood JM, Sterner RW (2014) Carbon and phosphorus linkages in Daphnia growth are determined by growth rate, not species or diet. Funct Ecol 28:1156–1165. doi: 10.1111/1365-2435.12243 CrossRefGoogle Scholar
  39. Hood JM, McNeely C, Finlay JC, Sterner RW (2014) Selective feeding determines patterns of nutrient release by stream invertebrates. Freshwater Sci 33:1093–1107. doi: 10.1086/678693 CrossRefGoogle Scholar
  40. Hutchens JJ, Benfield EF, Webster JR (1997) Diet and growth of a leaf-shredding caddisfly in southern Appalachian streams of contrasting disturbance history. Hydrobiologia 346:193–201. doi: 10.1023/A:1002930419317 CrossRefGoogle Scholar
  41. Kaushik NK, Hynes HBN (1971) Fate of dead leaves that fall into streams. Arch Hydrobiol 68:465–515Google Scholar
  42. Kjer KM, Blahnik RJ, Holzenthal RW (2002) Phylogeny of caddisflies (Insecta, Trichoptera). Zool Scr 31:83–91. doi: 10.1046/j.0300-3256.2001.00079.x CrossRefGoogle Scholar
  43. Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930. doi: 10.4319/lo.1988.33.4part2.0910 CrossRefGoogle Scholar
  44. Martin MM, Martin JS, Kukor JJ, Merritt RW (1980) The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera, Tipulidae). Oecologia 46:360–364. doi: 10.1007/BF00346265 CrossRefGoogle Scholar
  45. Martin MM, Kukor JJ, Martin JS, Otoole TE, Johnson MW (1981) Digestive enzymes of fungus-feeding beetles. Physiol Zool 54:137–145CrossRefGoogle Scholar
  46. Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600. doi: 10.1111/j.1461-0248.2004.00606.x CrossRefGoogle Scholar
  47. Pastor A, Compson ZG, Dijkstra P et al (2014) Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia 176:1111–1121. doi: 10.1007/s00442-014-3063-y CrossRefPubMedGoogle Scholar
  48. Pollierer MM, Dyckmans J, Scheu S, Haubert D (2012) Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol 26:978–990. doi: 10.1111/j.1365-2435.2012.02005.x CrossRefGoogle Scholar
  49. Raubenheimer D, Simpson SJ (1992) Analysis of covariance—an alternative to nutritional indices. Entomol Exp Appl 62:221–231. doi: 10.1111/j.1570-7458.1992.tb00662.x CrossRefGoogle Scholar
  50. Raubenheimer D, Simpson SJ (1994) The analysis of nutrient budgets. Funct Ecol 8:783–791. doi: 10.2307/2390238 CrossRefGoogle Scholar
  51. Scott EE, Prater C, Norman E, Baker BC, Evans-White M, Scott JT (2013) Leaf-litter stoichiometry is affected by streamwater phosphorus concentrations and litter type. Freshwater Sci 32:753–761. doi: 10.1899/12-215.1 CrossRefGoogle Scholar
  52. Sinsabaugh RL, Linkins AE, Benfield EF (1985) Cellulose digestion and assimilation by 3 leaf-shredding aquatic insects. Ecology 66:1464–1471. doi: 10.2307/1938009 CrossRefGoogle Scholar
  53. Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, PrincetonGoogle Scholar
  54. Tant CJ, Rosemond AD, First MR (2013) Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter. Freshwater Sci 32:1111–1121. doi: 10.1899/12-049.1 CrossRefGoogle Scholar
  55. Van Frankenhuyzen K, Geen GH, Koivisto C (1985) Direct and indirect effects of low pH on the transformation of detrital energy by the shredding caddisfly, Clistoronia magnifica (Banks) (Limnephilidae). Can J Zool 63:2298–2304. doi: 10.1139/z85-341 CrossRefGoogle Scholar
  56. Ward GM, Cummins KW (1979) Effects of food quality on growth of a stream detritivore, Paratendipes albimanus (Meigen) (Diptera, Chironomidae). Ecology 60:57–64. doi: 10.2307/1936468 CrossRefGoogle Scholar
  57. Wolf DC, Legg JO, Boutton TW (1994) Isotopic methods for the study of soil organic matter dynamics. In: Weaver RW, Scott A, Bottomley P et al (eds) Methods of soil analysis. Part 2. Microbiological and biochemical properties. The Soil Science Society of America, Madison, pp 865–906Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Halvor M. Halvorson
    • 1
  • Grant White
    • 1
  • J. Thad Scott
    • 2
  • Michelle A. Evans-White
    • 1
  1. 1.Department of Biological SciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Crop, Soil, and Environmental SciencesUniversity of ArkansasFayettevilleUSA

Personalised recommendations