, Volume 180, Issue 1, pp 257–264 | Cite as

Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient

  • Konstantin Gavazov
  • Frank Hagedorn
  • Alexandre Buttler
  • Rolf Siegwolf
  • Luca Bragazza
Ecosystem ecology - Original research


Peatlands are important sinks of atmospheric carbon (C) that, in response to climate warming, are undergoing dynamic vegetation succession. Here we examined the hypothesis that the uptake of nutrients by different plant growth forms (PGFs) is one key mechanism driving changes in species abundance in peatlands. Along an altitude gradient representing a natural climate experiment, we compared the variability of the stable C isotope composition (δ13C) and stable nitrogen (N) isotope composition (δ15N) in current-year leaves of two major PGFs, i.e. ericoids and graminoids. The climate gradient was associated with a gradient of vascular plant cover, which was parallelled by different concentrations of organic and inorganic N as well as the fungal/bacterial ratio in peat. In both PGFs the 13C natural abundance showed a marginal spatial decrease with altitude and a temporal decrease with progression of the growing season. Our data highlight a primary physical control of foliar δ13C signature, which is independent from the PGFs. Natural abundance of foliar 15N did not show any seasonal pattern and only in the ericoids showed depletion at lower elevation. This decreasing δ15N pattern was primarily controlled by the higher relative availability of organic versus inorganic N and, only for the ericoids, by an increased proportion of fungi to bacteria in soil. Our space-for-time approach demonstrates that a change in abundance of PGFs is associated with a different strategy of nutrient acquisition (i.e. transfer via mycorrhizal symbiosis versus direct fine-root uptake), which could likely promote observed and predicted dwarf shrub expansion under climate change.


Ericoids Graminoids Leaf chemistry Stable isotope ratio Fungal/bacterial ratio 1315


  1. Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH, Raffaelli DG (eds) Advances in ecological research, vol 30. Elsevier, San Diego, pp 1–67CrossRefGoogle Scholar
  2. Aerts R, Verhoeven JT, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:170–2181CrossRefGoogle Scholar
  3. Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC (2009) Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Funct Ecol 23:680–688CrossRefGoogle Scholar
  4. Akhmetzhanova AA, Soudzilovskaia NA, Onipchenko VG, Cornwell WK, Agafonov VA, Selivanov IA, Cornelissen JHC (2012) A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology 93:689–690CrossRefGoogle Scholar
  5. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031. doi:10.1029/2002GB001903 CrossRefGoogle Scholar
  6. Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994CrossRefGoogle Scholar
  7. Asada T, Warner BG, Aravena R (2005) Nitrogen isotope signature variability in plant species from open peatland. Aquat Bot 82:297–307CrossRefGoogle Scholar
  8. Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–710CrossRefGoogle Scholar
  9. Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat Clim Change 3:273–277CrossRefGoogle Scholar
  10. Bragazza L, Bardgett RD, Mitchell EAD, Buttler A (2015) Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol 205:1175–1182PubMedCrossRefGoogle Scholar
  11. Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339CrossRefGoogle Scholar
  12. Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ (2009) Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol 36:199–2131CrossRefGoogle Scholar
  13. Chapin FS, Shaver GR (1988) Differences in carbon and nutrient fractions among arctic growth forms. Oecologia 77:506–514CrossRefGoogle Scholar
  14. Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153CrossRefGoogle Scholar
  15. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Heijden MG, van der Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  16. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie E, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EG, Stock WD, Templer PH, Virginia R, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992PubMedCrossRefGoogle Scholar
  17. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  18. Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, ShawS Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304CrossRefGoogle Scholar
  19. Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180CrossRefGoogle Scholar
  20. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Diaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Martin Schmidt N, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM, Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Clim Ch 2:453–457CrossRefGoogle Scholar
  21. Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ (2001) Assimilation and isotopic fractionation of nitrogen by mycorrhizal and nonmycorrhizal subarctic plants. New Phytol 151:513–524CrossRefGoogle Scholar
  22. Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–971CrossRefGoogle Scholar
  23. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126PubMedCrossRefGoogle Scholar
  24. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  25. Frei C (2007) The future climate of Switzerland. In: OcCC and ProClim (eds) Climate change and Switzerland 2050: expected impacts on environment, society and economy. OcCC and ProClim, Bern, pp 12-23Google Scholar
  26. Green B, Tukey J (1960) Complex analyses of variance: general problems. Psychometrika 25:127–152CrossRefGoogle Scholar
  27. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126CrossRefGoogle Scholar
  28. Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382PubMedCrossRefGoogle Scholar
  29. Hobbie EA, Werner RA (2004) Bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385CrossRefGoogle Scholar
  30. Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P (2007) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phytol 160:225–238CrossRefGoogle Scholar
  31. Hultine KR, Marshall JD (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40CrossRefGoogle Scholar
  32. Jaatinen K, Fritze H, Laine J, Laiho R (2007) Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Ch Biol 13:491–510CrossRefGoogle Scholar
  33. Klaus G (2007) État et évolution des marais en Suisse: résultats du suivi de la protection des marais. État de l’environnement 0730. Office fédéral de l’environnement, BerneGoogle Scholar
  34. Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81:379–391CrossRefGoogle Scholar
  35. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  36. Körner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high-altitude. Oecologia 74:623–632CrossRefGoogle Scholar
  37. Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40CrossRefGoogle Scholar
  38. Marshall JD, Zhang J (1994) Carbon isotope discrimination and water se efficiency of native plants of the north-central Rockies. Ecology 75:1887–1895CrossRefGoogle Scholar
  39. Ménot G, Burns S (2001) Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland. Org Geochem 32:233–245CrossRefGoogle Scholar
  40. Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996) 15N natural abundances and N use by tundra plants. Oecologia 107:386–394CrossRefGoogle Scholar
  41. Nilsson LO, Giesler R, Bååth E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622PubMedCrossRefGoogle Scholar
  42. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochem 20:553–567CrossRefGoogle Scholar
  43. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117Google Scholar
  44. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162PubMedCrossRefGoogle Scholar
  46. Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Is photosynthesis suppressed at higher elevation due to low CO2 pressure? Ecology 76:2663–2668CrossRefGoogle Scholar
  47. Van der Heijden MGA, Martin FM, Sanders IR (2015) Tansley review mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423PubMedCrossRefGoogle Scholar
  48. Van Heerwaarden LM, Toet S, Aerts R (2003) Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol 91:1060–1070CrossRefGoogle Scholar
  49. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220CrossRefGoogle Scholar
  50. Vitousek PM, Field CB, Matson PA (1990) Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84:62–370CrossRefGoogle Scholar
  51. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  52. Werner C, Gessler A (2011) Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: a review of dynamics and mechanisms. Biogeosciences 8:2437–2459CrossRefGoogle Scholar
  53. Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268PubMedCrossRefGoogle Scholar
  54. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496PubMedCrossRefGoogle Scholar
  55. Yano Y, Shaver GR, Giblin AE, Rastetter EB (2009) Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction. Biogeochemistry 97:183–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Konstantin Gavazov
    • 1
    • 2
  • Frank Hagedorn
    • 3
  • Alexandre Buttler
    • 1
    • 2
    • 4
  • Rolf Siegwolf
    • 5
  • Luca Bragazza
    • 1
    • 2
    • 6
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape ResearchWSL Site LausanneLausanneSwitzerland
  2. 2.Ecole Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENACLaboratory of Ecological Systems ECOSLausanneSwitzerland
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape ResearchWSL Site BirmensdorfBirmensdorfSwitzerland
  4. 4.Laboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et TechniquesUniversité de Franche-ComtéBesançonFrance
  5. 5.Paul Scherrer Institute PSIVilligenSwitzerland
  6. 6.Department of Life Science and BiotechnologiesUniversity of FerraraFerraraItaly

Personalised recommendations