, Volume 180, Issue 1, pp 265–277 | Cite as

Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem

  • Natasja C. van GestelEmail author
  • Nirmala Dhungana
  • David T. Tissue
  • John C. Zak
Global change ecology - Original research


High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38 %) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53 %) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 –N + NH4 +–N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.


Temperature DTR Microbial biomass Soil respiration Nitrogen Big Bend National Park 



We thank Dr. V. Acosta-Martínez (USDA-ARS), Dr. D. Schwilk, Dr. C. Bell, Dr. K. Schmidt, Dr. H. Grizzle, J. Cotton, H. Metzler, L. Allen, C. Lewis, J. Stickles, P. Ortiz, K. Haralson, and S. Lockwood, and Dr. J. Sirotnak (NPS, Big Bend National Park). Funding was provided by NPS (JCZ and DTT), Project Number PMIS-83909, a USGS Global Climate Change Small Watershed Project Grant (JCZ), Project Number RW032, US Department of Energy National Institute for Climate Change Research Grant (DTT), an Achievement Rewards for College Scientists Foundation scholarship (NCvG), and the Texas Tech University Association of Biologists (NCvG). We are also grateful for insightful comments from Dr. Russell Monson and two anonymous reviewers.

Author contribution statement

NCvG and JCZ conceived and designed the experiments. NCvG and ND conducted the field experiment and laboratory analyses. NCvG analyzed the data and created the figures. NCvG, DTT and JCZ wrote the manuscript.

Supplementary material

442_2015_3452_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2525 kb)


  1. Allison S, Wallenstein M, Bradford M (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340. doi: 10.1038/NGEO846 CrossRefGoogle Scholar
  2. Alvarez R, Santanatoglia OJ, Garcîa R (1995) Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biol Fertil Soils 19:227–230. doi: 10.1007/BF00336164 CrossRefGoogle Scholar
  3. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi: 10.1007/s00442-004-1519-1 PubMedCrossRefGoogle Scholar
  4. Báez S, Fargione J, Moore DI, Collins SL, Gosz JR (2007) Atmospheric nitrogen deposition in the northern Chihuahuan desert: temporal trends and potential consequences. J Arid Environ 68:640–651. doi: 10.1016/j.jaridenv.2006.06.011 CrossRefGoogle Scholar
  5. Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert Grassland. Microb Ecol 56:153–167. doi: 10.1007/s00248-007-9333-z PubMedCrossRefGoogle Scholar
  6. Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue D, Zak J (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan Desert grassland. Microb Ecol 58:827–842. doi: 10.1007/S00248-009-9529-5 PubMedCrossRefGoogle Scholar
  7. Biederbeck VO, Campbell CA (1973) Soil microbial activity as influenced by temperature trends and fluctuations. Can J Soil Sci 53:363–376CrossRefGoogle Scholar
  8. Bradford MA (2013) Thermal adaptation of decomposer communities in warming soils. Front Microbiol 4:1–16. doi: 10.3389/fmicb.2013.00333 CrossRefGoogle Scholar
  9. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigaton and the release of soil nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  10. Clark J, Campbell J, Grizzle H, Acosta-Martínez V, Zak J (2009) Soil Microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microb Ecol 57:248–260. doi: 10.1007/S00248-008-9475-7 PubMedCrossRefGoogle Scholar
  11. Cochran RA, Rives JL (1985) Soil survey of Big Bend National Park: part of Brewster County. USDA-SCS in cooperation with the United States Department of Interior, National Park Service and Texas Agricultural Experiment Station. U.S. Government Printing Office, Washington DCGoogle Scholar
  12. Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420. doi: 10.1111/j.1365-2745.2008.01362.x CrossRefGoogle Scholar
  13. Dijkstra P, Thomas SC, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011) Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol Biochem 43:2023–2031. doi: 10.1016/j.soilbio.2011.05.018 CrossRefGoogle Scholar
  14. Dion P, Nautiyal CS (2008) Microbiology of extreme soils. Springer, BerlinCrossRefGoogle Scholar
  15. Gutschick VP, Snyder K (2006) Water and energy balances within the Jornada Basin. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and Function of a Chihuahuan Desert Ecosystem, The Jornada Basin long-term ecological research site. Oxford University Press, New York, pp 176–188Google Scholar
  16. Hadley N (1970) Micrometeorology and energy exchange in two desert arthropods. Ecology 51:434–444CrossRefGoogle Scholar
  17. Herrmann R, Stottlemyer R, Zak JC, Edmonds RL, Van Miegroet H (2000) Biogeochemical effects of global change on US national parks. J Am Water Resour Assoc 36:337–346. doi: 10.1111/j.1752-1688.2000.tb04272.x CrossRefGoogle Scholar
  18. Herron PM, Stark JM, Holt C, Hooker T, Cardon ZG (2009) Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biol Biochem 41:1262–1269. doi: 10.1016/j.soilbio.2009.03.010 CrossRefGoogle Scholar
  19. Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson J (ed) Adv nitrogen cycl agric ecosyst. CAB International, Wallingford, pp 368–386Google Scholar
  20. Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Change Biol 13:452–465CrossRefGoogle Scholar
  21. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EC) value. Soil Biol Biochem 28:25–31. doi: 10.1016/0038-0717(95)00102-6 CrossRefGoogle Scholar
  22. Jones DL (1999) Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biol Biochem 31:613–622. doi: 10.1016/S0038-0717(98)00167-9 CrossRefGoogle Scholar
  23. Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999. doi: 10.1016/j.soilbio.2005.08.012 CrossRefGoogle Scholar
  24. Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126CrossRefGoogle Scholar
  25. McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840. doi: 10.1126/science.1178984 PubMedCrossRefGoogle Scholar
  26. Nobel PS (1989) Temperature, water availability, and nutrient levels at various soil depths—consequences for shallow-rooted desert succulents, including nurse plant effects. Am J Bot 76:1486–1492CrossRefGoogle Scholar
  27. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  28. Nunan N, Morgan MA, Herlihy M (1998) Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biol Biochem 30:1599–1603. doi: 10.1016/S0038-0717(97)00226-5 CrossRefGoogle Scholar
  29. Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, Loik ME, Tissue DT (2015) Quantifying ecological memory in plant and ecosystem processes. Ecol Lett 18:221–235. doi: 10.1111/ele.12399 PubMedCrossRefGoogle Scholar
  30. Parker SS, Schimel JP (2011) Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Appl Soil Ecol 48:185–192. doi: 10.1016/j.apsoil.2011.03.007 CrossRefGoogle Scholar
  31. Patrick LD, Ogle K, Bell CW, Zak J, Tissue D (2009) Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics. Glob Change Biol 15:1214–1229. doi: 10.1111/j.1365-2486.2008.01750.x CrossRefGoogle Scholar
  32. Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79CrossRefGoogle Scholar
  33. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2012) nlme: Linear and nonlinear mixed effects models. R package version 3.1-104Google Scholar
  34. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:654. doi: 10.1038/nrmicro2854 CrossRefGoogle Scholar
  35. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  36. Reynolds JF, Kemp PR, Ogle K, Fernandez RJ (2004) Modifying the “pulse-reserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210. doi: 10.1007/s00442-004-1524-4 PubMedCrossRefGoogle Scholar
  37. Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol Appl 7:158–170. doi:10.1890/1051-0761(1997)007[0158:SRMAAP]2.0.CO;2)Google Scholar
  38. Robertson TR, Bell CW, Zak JC, Tissue DT (2009) Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. New Phytol 181:230–242. doi: 10.1111/j.1469-8137.2008.02643.x PubMedCrossRefGoogle Scholar
  39. Russell JB (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11. doi: 10.1159/000103591 PubMedCrossRefGoogle Scholar
  40. Schimel DS, Parton WJ, Kittel TGF, Ojima DS, Cole CV (1990) Grassland biogeochemistry—links to atmospheric processes. Clim Change 17:13–25. doi: 10.1007/bf00148998 CrossRefGoogle Scholar
  41. Shaver GR, Billings WD, Chapin FS, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of arctic ecosystems. Bioscience 42:433–441. doi: 10.2307/1311862 CrossRefGoogle Scholar
  42. Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939. doi: 10.1111/ele.12113 PubMedCrossRefGoogle Scholar
  43. Stursova M, Crenshaw CL, Sinsabaugh RL (2006) Microbial responses to long-term N deposition in a semiarid grassland. Microb Ecol 51:90–98. doi: 10.1007/s00248-005-5156-y PubMedCrossRefGoogle Scholar
  44. Treseder KK, Schimel JP, Garcia MO, Whiteside MD (2010) Slow turnover and production of fungal hyphae during a Californian dry season. Soil Biol Biochem 42:1657–1660. doi: 10.1016/j.soilbio.2010.06.005 CrossRefGoogle Scholar
  45. Van Gestel NC, Schwilk DW, Tissue DT, Zak JC (2011) Reductions in daily soil temperature variability increase soil microbial biomass C and decrease soil N availability in the Chihuahuan Desert: potential implications for ecosystem C and N fluxes. Glob Change Biol 17:3564–3576. doi: 10.1111/j.1365-2486.2011.02479.x CrossRefGoogle Scholar
  46. Van Gestel NC, Reischke S, Bååth E (2013) Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations. Soil Biol Biochem 65:180–185. doi: 10.1016/j.soilbio.2013.05.016 CrossRefGoogle Scholar
  47. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  48. Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32:L23822. doi: 10.1029/2005GL024379 CrossRefGoogle Scholar
  49. Xiang S-R, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289. doi: 10.1016/j.soilbio.2008.05.004 CrossRefGoogle Scholar
  50. Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13:2018–2035. doi: 10.1111/j.1365-2486.2007.01415.x CrossRefGoogle Scholar
  51. Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359. doi: 10.1007/s00442-007-0836-6 PubMedCrossRefGoogle Scholar
  52. Zhou L, Dickinson RE, Dai A, Dirmeyer P (2009) Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations. Clim Dyn 35:1289–1307. doi: 10.1007/s00382-009-0644-2 CrossRefGoogle Scholar
  53. Zhu BA, Cheng WX (2011) Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol Biochem 43:866–869. doi: 10.1016/j.soilbio.2010.12.021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Natasja C. van Gestel
    • 1
    • 2
    Email author
  • Nirmala Dhungana
    • 2
  • David T. Tissue
    • 3
  • John C. Zak
    • 2
  1. 1.Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of Biological SciencesTexas Tech UniversityLubbockUSA
  3. 3.Hawkesbury Institute for the EnvironmentUniversity of Western SydneyRichmondAustralia

Personalised recommendations