Advertisement

Oecologia

, Volume 179, Issue 4, pp 1111–1122 | Cite as

Survival, growth and vulnerability to drought in fire refuges: implications for the persistence of a fire-sensitive conifer in northern Patagonia

  • Jennifer B. Landesmann
  • Juan H. Gowda
  • Lucas A. Garibaldi
  • Thomas Kitzberger
Population ecology - Original research

Abstract

Fire severity and extent are expected to increase in many regions worldwide due to climate change. Therefore, it is crucial to assess the relative importance of deterministic vs. stochastic factors producing remnant vegetation to understand their function in the persistence of fire-sensitive plants. Vegetation remnants (areas within the landscape that have not burned for a considerable amount of time) may occur stochastically or in more predictable locations (fire refuges) where physical conditions decrease fire severity. Our aim was to determine if remnant forests of the fire-sensitive conifer Austrocedrus chilensis are associated with biophysical attributes that allow persistence in a fire-prone Patagonian landscape. We conducted a multi-scale approach, determining attributes of forest remnants and their surroundings (matrices) through remote sensing and field-based biophysical and functional characteristics, and quantifying how tree survival probability relates to microsite conditions. Trees within remnants displayed abundant fire scars, were twofold older and had threefold larger growth rates than matrix trees. Remnants were associated with high rocky cover and elevated topographical positions. Tree survival increased in hilltops, eastern aspects, and with sparse vegetation. Trees within remnants experienced severe reductions in growth during droughts. Our results suggest that A. chilensis remnants are mainly the result of refuges, where environmental conditions increase fire survival, but also increase susceptibility to drought. A trade-off between fire survival and drought vulnerability may imply that under increasing drought and fire severity, locations that in the past have served as refuges may reduce their ability to allow the persistence of fire-sensitive taxa.

Keywords

Basal area increment Forest remnant Climate change Biophysical attributes Austrocedrus chilensis 

Notes

Acknowledgments

We thank Juan Manuel Morales for insightful comments on the manuscript and Maria Laura Suarez for her help in the tree chronology and correlation function analysis. We especially thank Jeremy Lichstein (handling editor) and two anonymous reviewers for their comments which greatly improved the quality of the manuscript. This study was funded by grant BIRF 7520 (Sustainable Forests Plantations Component) PIA 10058 and PIA 12055 (Ministerio de Agricultura, Ganadería y Pesca). J.B.L. acknowledges a CONICET fellowship.

Author contribution statement

J.B.L. performed the research, conducted fieldwork, analyzed the data and wrote the manuscript. J.B.L., J.H.G. and T.K. conceived and designed the study. L.A.G. contributed to the data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest and that the experiments comply with the current laws of Argentina, where the experiments were performed.

Supplementary material

442_2015_3431_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 89 kb)
442_2015_3431_MOESM2_ESM.pdf (456 kb)
Supplementary material 2 (PDF 456 kb)
442_2015_3431_MOESM3_ESM.pdf (408 kb)
Supplementary material 3 (PDF 407 kb)

References

  1. Bengtsson J, Angelstam P, Elmqvist T, Emanuelsson U, Folke C et al (2003) Reserves, resilience and dynamic landscapes. Ambio 32(6):389–396. doi: 10.1579/0044-7447-32.6.389 CrossRefPubMedGoogle Scholar
  2. Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76:747–762. doi: 10.2307/1939341 CrossRefGoogle Scholar
  3. Bran D, Ayesa J, López C, Sbriller D (1996) Evaluación del área afectada por el incendio de enero de 1996 en Co. Catedral. Laboratorio de Teledetección Aplicada, INTA EEA BarilocheGoogle Scholar
  4. Büdel B, Becker U, Follmann G, Sterflinger K (2000) Algae, fungi, and lichens on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Heidelberg, pp 69–90CrossRefGoogle Scholar
  5. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124. doi: 10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  6. Camp A, Oliver C, Hessburg P, Everett R (1997) Predicting late-successional fire refugia pre-dating European settlement in the wenatchee mountains. For Ecol Manage 95(1):63–77. doi: 10.1016/S0378-1127(97)00006-6 CrossRefGoogle Scholar
  7. Clarke PJ (2002a) Habitat islands in fire-prone vegetation: do landscape features influence community composition? J Biogeogr 29(5/6):677–684. doi: 10.1046/j.1365-2699.2002.00716.x CrossRefGoogle Scholar
  8. Clarke PJ (2002b) Habitat insularity and fire response traits: evidence from a sclerophyll archipelago. Oecologia 132(4):582–591. doi: 10.1007/s00442-002-0962-0 CrossRefGoogle Scholar
  9. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, HeidelbergCrossRefGoogle Scholar
  10. Cottam G, Curtis JT (1956) The use of distance measures in phytosociological sampling. Ecology 37:451–460. doi: 10.2307/1930167 CrossRefGoogle Scholar
  11. Crawley MJ (2007) The R book. Wiley, New YorkCrossRefGoogle Scholar
  12. De Long SC, Kessler WB (2000) Ecological characteristics of mature forest remnants left by wildfire. For Ecol Manage 131(1):93–106. doi: 10.1016/S0378-1127(99)00203-0 Google Scholar
  13. Dean AM, Smith GM (2003) An evaluation of per-parcel land cover mapping using maximum likelihood class probabilities. Int J Remote Sens 24(14):2905–2920. doi: 10.1080/01431160210155910 CrossRefGoogle Scholar
  14. Douglass AE (1920) Evidence of climatic effects in the annual rings of trees. Ecology 1:24–32. doi: 10.2307/1929253 CrossRefGoogle Scholar
  15. Elmqvist T, Wall M, Berggren AL, Blix L, Fritioff A, Rinman U (2001) Tropical forest reorganization after cyclone and fire disturbance in Samoa: remnant trees as biological legacies. Conserv Ecol 5(2):10Google Scholar
  16. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507. doi: 10.1071/WF08187 CrossRefGoogle Scholar
  17. Gowda JH, Kitzberger T, Premoli AC (2012) Landscape responses to a century of land use along the northern Patagonian forest-steppe transition. Plant Ecol 213(2):259–272. doi: 10.1007/s11258-011-9972-5 CrossRefGoogle Scholar
  18. Homma K (1997) Effects of snow pressure on growth form and life history of tree species in Japanese beech forest. J Veg Sci 8:781–788. doi: 10.2307/3237022 CrossRefGoogle Scholar
  19. Houle G, Delwaide A (1991) Population structure and growth-stress relationship of Pinus taeda in rock outcrop habitats. J Veg Sci 2:47–58. doi: 10.2307/3235897 CrossRefGoogle Scholar
  20. Hunter JT (2003) Persistence on inselbergs: the role of obligate seeders and resprouters. J Biogeogr 30(4):497–510. doi: 10.1046/j.1365-2699.2003.00876.x CrossRefGoogle Scholar
  21. Intergovernmental Panel on Climate Change (2007) Climate change 2007: The IPCC fourth assessment report. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Keppel G, Wardell-Johnson GW (2012) Refugia: keys to climate change management. Glob Change Biol 18(8):2389–2391. doi: 10.1111/j.1365-2486.2012.02729.x CrossRefGoogle Scholar
  23. Kitzberger T, Veblen TT (1999) Fire-induced changes in northern Patagonian landscapes. Landscape Ecol 14:1–15. doi: 10.1023/A:1008069712826 CrossRefGoogle Scholar
  24. Kitzberger T, Aráoz E, Gowda JH, Mermoz M, Morales JM (2012) Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems 15(1):97–112. doi: 10.1007/s10021-011-9494-y CrossRefGoogle Scholar
  25. Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ (2011) How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2(4):art42. doi: 10.1890/ES10-00204.1 CrossRefGoogle Scholar
  26. Leonard SW, Bennett AF, Clarke MF (2014) Determinants of the occurrence of unburnt forest remnants: potential biotic refuges within a large, intense wildfire in south-eastern Australia. For Ecol Manage 314:85–93. doi: 10.1016/j.foreco.2013.11.036 CrossRefGoogle Scholar
  27. Mackey B, Berry S, Hugh S, Ferrier S, Harwood TD, Williams KJ (2012) Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges. Ecol Appl 22(6):1852–1864. doi: 10.1890/11-1479.1 CrossRefPubMedGoogle Scholar
  28. Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in patagonian forests and shrublands. Ecology 86(10):2705–2715. doi: 10.1890/04-1850 CrossRefGoogle Scholar
  29. Monmonier MS (1982) Computer-assisted cartography: principles and prospects. Prentice-Hall, Englewood Cliffs, NJ, pp 76–80Google Scholar
  30. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  31. Newton A et al. (2011) Landscape-scale dynamics and restoration of dryland forest ecosystems. In: Newton A, Tejedor N (eds) Principles and practice of forest landscape restoration: case studies from the drylands of Latin America. International Union for Conservation of Nature, pp 229–272Google Scholar
  32. Ordóñez JL, Retana J, Espelta JM (2005) Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For Ecol Manage 206(1):109–117. doi: 10.1016/j.foreco.2004.10.067 CrossRefGoogle Scholar
  33. Perera AH, Dalziel BD, Buse LJ, Routledge RG (2009) Spatial variability of stand-scale residuals in Ontario’s boreal forest fires. Can J For Res 39(5):945–961. doi: 10.1139/X09-024 CrossRefGoogle Scholar
  34. Pinheiro J, Bates D, DebRoy S, Sarkar D (2011) R Development Core Team 2010, nlme: linear and nonlinear mixed effects models. R package version 3.1-97. R Foundation for Statistical Computing, ViennaGoogle Scholar
  35. Robinson NM, Leonard SW, Ritchie EG, Bassett M, Chia EK, Buckingham S, Gibb H, Bennett AF, Clarke MF (2013) Refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol 50(6):1321–1329. doi: 10.1111/1365-2664.12153 CrossRefGoogle Scholar
  36. Robinson NM, Leonard SW, Bennett AF, Clarke MF (2014) Refuges for birds in fire-prone landscapes: the influence of fire severity and fire history on the distribution of forest birds. For Ecol Manage 318:110–121. doi: 10.1016/j.foreco.2014.01.008 CrossRefGoogle Scholar
  37. Román-Cuesta RM, Gracia M, Retana J (2009) Factors influencing the formation of unburned forest islands within the perimeter of a large forest fire. For Ecol Manage 258(2):71–80. doi: 10.1016/j.foreco.2009.03.041 CrossRefGoogle Scholar
  38. Salguero J (2000) Informe sobre las consecuencias ecológicas de los incendios forestales. APN, Delegación Regional Patagonia, Ecología del FuegoGoogle Scholar
  39. Schwilk DW, Keeley JE (2006) The role of fire refugia in the distribution of Pinus sabiniana (Pinaceae) in the southern Sierra Nevada. Madrono 53(4):364–372. doi: 10.3120/0024-9637(2006) CrossRefGoogle Scholar
  40. Souto C, Gardner M (2013) Austrocedrus chilensis. The IUCN red list of threatened species, version 2014.3Google Scholar
  41. Szarzynski J (2000) Xeric islands: environmental conditions on inselbergs. In: Porembski S, Barthlott W. (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Heidelberg, p 37–48Google Scholar
  42. Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) The characteristics of ASTER GDEM version 2, IGARSS, pp 3657–3660 doi:  10.1109/IGARSS.2011.6050017
  43. Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523. doi: 10.1007/s100219900047 CrossRefGoogle Scholar
  44. Uhl C, Kauffman JB (1990) Deforestation, fire, susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437–449. doi: 10.2307/1940299 CrossRefGoogle Scholar
  45. Van Wilgen BW, Higgins KB, Bellstedt DU (1990) The role of vegetation structure and fuel chemistry in excluding fire from forest remnants in the fire-prone fynbos shrublands of South Africa. J Ecol 78:210–222CrossRefGoogle Scholar
  46. Veblen TT, Lorenz DC (1988) Recent vegetation changes along the forest/steppe ecotone in northern Patagonia. Ann Assoc Am Geogr 78:93–111. doi: 10.1111/j.1467-8306.1988.tb00193.x CrossRefGoogle Scholar
  47. Veblen TT, Kitzberger T, Raffaele E, Lorenz D (2003) Fire history and vegetation changes in northern Patagonia, Argentina. In: Veblen TT, Baker W, Montenegro G, Swetnam TW (eds) fire and climatic change in temperate ecosystems of the western Americas. Ecological studies, vol 160. Springer, Heidelberg, pp 265–295Google Scholar
  48. Veblen TT, Kitzberger T, Raffaele E, Mermoz M, González ME, Sibold JS, Holz A (2008) The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region. Int J Wildland Fire 17(6):724–741CrossRefGoogle Scholar
  49. Villalba R, Veblen TT (1997) Spatial and temporal variation in Austrocedrus growth along the forest steppe ecotone in northern Patagonia. Can J For Res 27(4):580–597. doi: 10.1139/cjfr-27-4-580 Google Scholar
  50. Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79:2624–2640. doi: 10.1890/0012-9658(1998) CrossRefGoogle Scholar
  51. Willis B (1914) El Norte de la Patagonia. Dirección de Parques Nacionales, Buenos AiresGoogle Scholar
  52. Wood SW, Murphy BP, Bowman DM (2011) Firescape ecology: how topography determines the contrasting distribution of fire and rain forest in the south-west of the Tasmanian Wilderness World Heritage area. J Biogeogr 38(9):1807–1820. doi: 10.1111/j.1365-2699.2011.02524.x CrossRefGoogle Scholar
  53. Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74. doi: 10.1016/j.dendro.2012.08.001 CrossRefGoogle Scholar
  54. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jennifer B. Landesmann
    • 1
  • Juan H. Gowda
    • 1
  • Lucas A. Garibaldi
    • 2
  • Thomas Kitzberger
    • 1
  1. 1.Laboratorio EcotonoINIBIOMA-CONICET, Universidad Nacional del ComahueBarilocheArgentina
  2. 2.Sede Andina, Universidad Nacional de Río Negro (UNRN), CONICETBarilocheArgentina

Personalised recommendations