, Volume 181, Issue 1, pp 1–12 | Cite as

Nutrient acquisition across a dietary shift: fruit feeding butterflies crave amino acids, nectivores seek salt

  • Alison RavenscraftEmail author
  • Carol L. Boggs
Highlighted Student Research


Evolutionary dietary shifts have major ecological consequences. One likely consequence is a change in nutrient limitation—some nutrients become more abundant in the diet, others become more scarce. Individuals’ behavior should change accordingly to match this new limitation regime: they should seek out nutrients that are deficient in the new diet. We investigated the relationship between diet and responses to nutrients using adult Costa Rican butterflies with contrasting feeding habits, testing the hypothesis that animals will respond more positively to nutrients that are scarcer in their diets. Via literature searches and our own data, we showed that nitrogen and sodium are both at lower concentration in nectar than in fruit. We therefore assessed butterflies’ acceptance of sodium and four nitrogenous compounds that ranged in complexity from inorganic nitrogen (ammonium chloride) to protein (albumin). We captured wild butterflies, offered them aqueous solutions of each substance, and recorded whether they accepted (drank) or rejected each substance. Support for our hypothesis was mixed. Across the sexes, frugivores were four times more likely to accept amino acids (hydrolyzed casein) than nectivores, in opposition to expectation. In males, nectivores accepted sodium almost three times more frequently than frugivores, supporting expectations. Together, these results suggest that in butterflies, becoming frugivorous is associated with an increased receptivity to amino acids and decreased receptivity to sodium. Nectivory and frugivory are widespread feeding strategies in organisms as diverse as insects, birds, and bats; our results suggest that these feeding strategies may put different pressures on how animals fulfill their nutritional requirements.


Feeding guild Nutrient limitation Foraging Nectar Chemical composition 



Sincere thanks are due to M. Berry for field assistance, R. Vannette for conducting the UPLC analyses, and T. Fukami for use of his UPLC equipment. L. O. Frishkoff, H. K. Frank, A. Bowring, members of the Boggs lab, and T. Fukami’s 2013 Ecological Statistics class provided insightful discussion. The staffs of OTS and La Selva Biological Station offered invaluable logistical assistance and support in the field. The Costa Rican Ministry of Environment, Energy and Telecommunications issued our research permit (202-2012-SINAC). This work was supported by a National Science Foundation Graduate Research Fellowship to AR and grants from the Stanford University Biology Department, the Stanford University Center for Latin American Studies, and the Stanford University Biosciences Office of Graduate Education.

Author contribution statement

AR and CLB conceived and designed the experiments. AR performed the experiments and analyzed the data. AR wrote the manuscript and CLB provided significant editorial feedback.

Supplementary material

442_2015_3403_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2138 kb).


  1. Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420. doi: 10.1034/j.1600-0706.2000.910301.x CrossRefGoogle Scholar
  2. Adler P, Pearson D (1982) Why do male butterflies visit mud puddles? Can J Zool 60:322–325CrossRefGoogle Scholar
  3. Alm J, Ohnmeiss TE, Lanza J, Vriesenga L (1990) Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84:53–57CrossRefGoogle Scholar
  4. Arms K, Feeny P, Lederhouse RC (1974) Sodium: stimulus for puddling behavior by tiger swallowtail butterflies, Papilio glaucus. Science 185:372–374CrossRefPubMedGoogle Scholar
  5. Atwood TC, Weeks HP (2003) Sex-specific patterns of mineral lick preference in white-tailed deer. Northeast Nat 10:409–414CrossRefGoogle Scholar
  6. Baker H, Baker I (1973) Amino acids in nectar and their evolutionary significance. Nature 241:543–545CrossRefGoogle Scholar
  7. Baker H, Baker I (1986) The occurence and significance of amino acids in floral nectar. Plant Syst Evol 151:175–186CrossRefGoogle Scholar
  8. Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond B Biol Sci 348:381–392. doi: 10.1098/rstb.1995.0076 CrossRefPubMedGoogle Scholar
  9. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1.7Google Scholar
  10. Beck J (2007) The importance of amino acids in the adult diet of male tropical rainforest butterflies. Oecologia 151:741–747. doi: 10.1007/s00442-006-0613-y CrossRefPubMedGoogle Scholar
  11. Beck J (2008) Phylogenetic and ecological correlates with male adult life span of rainforest butterflies. Evol Ecol 22:507–517. doi: 10.1007/s10682-007-9179-3 CrossRefGoogle Scholar
  12. Beck J, Fiedler K (2009) Adult life spans of butterflies: broadscale contingencies with adult and larval traits in multi-species comparisons. Biol J Linn Soc 96:166–184. doi: 10.1111/j.1095-8312.2008.01102.x CrossRefGoogle Scholar
  13. Beck J, Mühlenberg E, Fiedler K (1999) Mud-puddling behavior in tropical butterflies: in search of proteins or minerals? Oecologia 119:140–148CrossRefGoogle Scholar
  14. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. doi: 10.2307/2346101 Google Scholar
  15. Bennett D, Kaneko A, Karasawa Y (2012) Maintenance nitrogen requirements of adult female ostriches (Struthio camelus). J Anim Physiol Anim Nutr (Berl) 96:600–609. doi: 10.1111/j.1439-0396.2011.01184.x CrossRefGoogle Scholar
  16. Boggs C (2009) Understanding insect life histories and senescence through a resource allocation lens. Funct Ecol 23:27–37. doi: 10.1111/j.1365-2435.2008.01527.x CrossRefGoogle Scholar
  17. Boggs CL, Dau B (2004) Resource specialization in puddling lepidoptera. Environ Entomol 33:1020–1024. doi: 10.1603/0046-225X-33.4.1020 CrossRefGoogle Scholar
  18. Boggs CL, Jackson LA (1991) Mud puddling by butterflies is not a simple matter. Ecol Entomol 16:123–127CrossRefGoogle Scholar
  19. Bravo A, Harms KE, Emmons LH (2010) Puddles created by geophagous mammals are potential mineral sources for frugivorous bats (Stenodermatinae) in the Peruvian Amazon. J Trop Ecol 26:173–184. doi: 10.1017/S0266467409990472 CrossRefGoogle Scholar
  20. Bush GL (1992) Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche 99:335–357CrossRefGoogle Scholar
  21. Cahenzli F, Erhardt A (2012) Host plant defence in the larval stage affects feeding behaviour in adult butterflies. Anim Behav 84:995–1000. doi: 10.1016/j.anbehav.2012.07.025 CrossRefGoogle Scholar
  22. Cahenzli F, Erhardt A (2013) Nectar amino acids enhance reproduction in male butterflies. Oecologia 171:197–205. doi: 10.1007/s00442-012-2395-8 CrossRefPubMedGoogle Scholar
  23. Daily GC, Ehrlich PR (1995) Preservation of biodiversity in small rainforest patches: rapid evaluations using butterfly trapping. Biodivers Conserv 4:35–55. doi: 10.1007/BF00115313 CrossRefGoogle Scholar
  24. DeVries P (1987) The butterflies of Costa Rica and their natural history: Papilionidae, Pieridae, and Nymphalidae, vol 1. Princeton University Press, PrincetonGoogle Scholar
  25. DeVries P (1988) Stratification of fruit-feeding nymphalid butterflies in a Costa Rican rainforest. J Res Lepid 26:98–108Google Scholar
  26. Dierks A, Fischer K (2008) Feeding responses and food preferences in the tropical, fruit-feeding butterfly, Bicyclus anynana. J Insect Physiol 54:1363–1370. doi: 10.1016/j.jinsphys.2008.07.008 CrossRefPubMedGoogle Scholar
  27. Douglas AE (1998) Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37CrossRefPubMedGoogle Scholar
  28. Dudley R, Kaspari M, Yanoviak SP (2012) Lust for salt in the western Amazon. Biotropica 44:6–9CrossRefGoogle Scholar
  29. Dunlap-Pianka H, Boggs C, Gilbert L (1977) Ovarian dynamics in heliconiine butterflies: programmed senescence versus eternal youth. Science 197:487–490CrossRefPubMedGoogle Scholar
  30. Eberhard SH, Hrassnigg N, Crailsheim K, Krenn HW (2007) Evidence of protease in the saliva of the butterfly Heliconius melpomene (L.) (Nymphalidae, Lepidoptera). J Insect Physiol 53:126–131. doi: 10.1016/j.jinsphys.2006.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608. doi: 10.2307/2406212 CrossRefGoogle Scholar
  32. Erhardt A, Rusterholz H-P (1998) Do peacock butterflies (Inachis io L.) detect and prefer nectar amino acids and other nitrogenous compounds? Oecologia 117:536–542CrossRefGoogle Scholar
  33. Erhardt A, Rusterholz HP, Stöcklin J (2005) Elevated carbon dioxide increases nectar production in Epilobium angustifolium L. Oecologia 146:311–317. doi: 10.1007/s00442-005-0182-5 CrossRefPubMedGoogle Scholar
  34. Fischer K, O’Brien DM, Boggs CL (2004) Allocation of larval and adult resources to reproduction in a fruit-feeding butterfly. Funct Ecol 18:656–663CrossRefGoogle Scholar
  35. Frausto da Silva J, Williams R (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, OxfordGoogle Scholar
  36. Freeland WJ, Calcott PH, Geiss DP (1985) Allelochemicals, minerals and herbivore population size. Biochem Syst Ecol 13:195–206. doi: 10.1016/0305-1978(85)90079-1 CrossRefGoogle Scholar
  37. Gijbels P, Van den Ende W, Honnay O (2014) Landscape scale variation in nectar amino acid and sugar composition in a Lepidoptera pollinated orchid species and its relation with fruit set. J Ecol 102:136–144. doi: 10.1111/1365-2745.12183 CrossRefGoogle Scholar
  38. Gilbert LE (1972) Pollen feeding and reproductive biology of Heliconius butterflies. Proc Natl Acad Sci 69:1403–1407CrossRefPubMedPubMedCentralGoogle Scholar
  39. Goldman-Huertas B, Mitchell RF, Lapoint RT et al (2015) Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci 112:3026–3031. doi: 10.1073/pnas.1424656112 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grant BR, Grant PR (2003) What Darwin’s finches can teach us about the evolutionary origin and regulation of biodiversity. Bioscience 53:965–975. doi:10.1641/0006-3568(2003)053[0965:WDFCTU]2.0.CO;2Google Scholar
  41. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313:224–226. doi: 10.1126/science.1128374 CrossRefPubMedGoogle Scholar
  42. Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, PrincetonGoogle Scholar
  43. Han WX, Fang JY, Reich PB et al (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796. doi: 10.1111/j.1461-0248.2011.01641.x CrossRefPubMedGoogle Scholar
  44. Holdø RM, Dudley JP, McDowell LR (2002) Geophagy in the African elephant in relation to availability of dietary sodium. J Mammal 83:652–664. doi:10.1644/1545-1542(2002)083%3c0652:GITAEI%3e2.0.CO;2Google Scholar
  45. Kaspari M, Yanoviak SP, Dudley R (2008) On the biogeography of salt limitation: a study of ant communities. Proc Natl Acad Sci 105:17848–17851. doi: 10.1073/pnas.0804528105 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Keeler MS, Chew FS (2008) Escaping an evolutionary trap: preference and performance of a native insect on an exotic invasive host. Oecologia 156:559–568. doi: 10.1007/s00442-008-1005-2 CrossRefPubMedGoogle Scholar
  47. Knopp MCN, Krenn HW (2003) Efficiency of fruit juice feeding in Morpho peleides (Nymphalidae, Lepidoptera). J Insect Behav 16:67–77CrossRefGoogle Scholar
  48. Krenn H (2008) Feeding behaviours of neotropical butterflies. In: Weissenhofer A, Huber W, Mayer V et al (eds) (2008) Natural and Cultural History of the Golfo Dulce Region, Costa Rica, Stapfia 88. Oberösterreichisches Landesmuseum, Linz, pp 295–304Google Scholar
  49. Krenn HW (2010) Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annu Rev Entomol 55:307–327. doi: 10.1146/annurev-ento-112408-085338 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Krenn HW, Zulka KP, Gatschnegg T (2001) Proboscis morphology and food preferences in nymphalid butterflies (Lepidoptera: Nymphalidae). J Zool 254:17–26CrossRefGoogle Scholar
  51. Larsen TH, Lopera A, Forsyth A, Génier F (2009) From coprophagy to predation: a dung beetle that kills millipedes. Biol Lett 5:152–155. doi: 10.1098/rsbl.2008.0654 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lederhouse R, Ayres M, Scriber J (1990) Adult nutrition affects male virility in Papilio glaucus L. Funct Ecol 4:743–751CrossRefGoogle Scholar
  53. Liebig von J (1855) Die Grundsätze der Agricultur-Chemie mit Rücksicht auf die in England angestellten Untersuchungen (in England: The relations of chemistry to agriculture and the agricultural experiments of Mr. J.B. Lawes), 2nd edn. Friedrich Vieweg und Sohn Publ. Co., BraunschweigGoogle Scholar
  54. Mevi-Schütz J, Erhardt A (2003a) Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84:2788–2794CrossRefGoogle Scholar
  55. Mevi-Schütz J, Erhardt A (2003b) Effects of nectar amino acids on fecundity of the wall brown butterfly (Lasiommata megera L.). Basic Appl Ecol 4:413–421CrossRefGoogle Scholar
  56. Mevi-Schütz J, Erhardt A (2005) Amino acids in nectar enhance butterfly fecundity: a long-awaited link. Am Nat 165:411–419. doi: 10.1086/429150 CrossRefPubMedGoogle Scholar
  57. Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128CrossRefGoogle Scholar
  58. Molleman F, Van Alphen ME, Brakefield PM, Zwaan BJ (2005a) Preferences and food quality of fruit-feeding butterflies in Kibale Forest, Uganda. Biotropica 37:657–663CrossRefGoogle Scholar
  59. Molleman F, Grunsven RHA, Liefting M et al (2005b) Is male puddling behaviour of tropical butterflies targeted at sodium for nuptial gifts or activity? Biol J Linn Soc 86:345–361. doi: 10.1111/j.1095-8312.2005.00539.x CrossRefGoogle Scholar
  60. Molleman F, Zwaan B, Brakefield PM, Carey JR (2007) Extraordinary long life spans in fruit-feeding butterflies can provide window on evolution of life span and aging. Exp Gerontol 42:472–482CrossRefPubMedPubMedCentralGoogle Scholar
  61. Molleman F, Ding J, Wang J-L et al (2008) Amino acid sources in the adult diet do not affect life span and fecundity in the fruit-feeding butterfly Bicyclus anynana. Ecol Entomol 33:429–438. doi: 10.1111/j.1365-2311.2008.00986.x.Amino CrossRefPubMedPubMedCentralGoogle Scholar
  62. Montenegro OL (1998) The behaviour of lowland tapir (Tapirus terrestris) at a natural mineral lick in the Peruvian Amazon. Master’s thesis, University of FloridaGoogle Scholar
  63. Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763CrossRefPubMedGoogle Scholar
  64. O’Brien DM, Boggs CL, Fogel ML (2003) Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs. Proc R Soc Lond B 270:2631–2636. doi: 10.1098/rspb.2003.2552 CrossRefGoogle Scholar
  65. Omura H, Honda K, Hayashi N (2000) Identification of feeding attractants in oak sap for adults of two nymphalid butterflies, Kaniska canace and Vanessa indica. Physiol Entomol 25:281–287. doi: 10.1046/j.1365-3032.2000.00193.x CrossRefGoogle Scholar
  66. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  67. Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc B Biol Sci 279:749–758. doi: 10.1098/rspb.2011.1230 CrossRefGoogle Scholar
  68. Pebsworth PA, Bardi M, Huffman MA (2012) Geophagy in chacma baboons: patterns of soil consumption by age class, sex, and reproductive state. Am J Primatol 74:48–57. doi: 10.1002/ajp.21008 CrossRefPubMedGoogle Scholar
  69. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  70. Pivnick KA, McNeil JN (1987) Puddling in butterflies: sodium affects reproductive success in Thymelicus lineola. Physiol Entomol 12:461–472CrossRefGoogle Scholar
  71. Price SA, Hopkins SSB, Smith KK, Roth VL (2012) Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci 109:7008–7012. doi: 10.1073/pnas.1117133109 CrossRefPubMedPubMedCentralGoogle Scholar
  72. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  73. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci 101:11001–11006. doi: 10.1073/pnas.0403588101 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rühle C (2000) Preferences for nectar amino acids and nectar sugars in different Lepidoptera species: Lysandra bellargus, Polyommatus icarus, Maniola jurtina and Autographa gamma. Diploma thesis, University of BaselGoogle Scholar
  75. Rusterholz H-P, Erhardt A (2000) Can nectar properties explain sex-specific flower preferences in the Adonis Blue butterfly Lysandra bellargus? Ecol Entomol 25:81–90CrossRefGoogle Scholar
  76. Sculley CE, Boggs CL (1996) Mating systems and sexual division of foraging effort affect puddling behaviour by butterflies. Ecol Entomol 21:193–197CrossRefGoogle Scholar
  77. Seastedt T, Crossley D (1981) Sodium dynamics in forest ecosystems and the animal starvation hypothesis. Am Nat 117:1029–1034CrossRefGoogle Scholar
  78. Simpson SJ, Sibly RM, Lee KP et al (2004) Optimal foraging when regulating intake of multiple nutrients. Anim Behav 68:1299–1311. doi: 10.1016/j.anbehav.2004.03.003 CrossRefGoogle Scholar
  79. Snell-Rood EC, Espeset A, Boser CJ et al (2014) Anthropogenic changes in sodium affect neural and muscle development in butterflies. Proc Natl Acad Sci 111:10221–10226. doi: 10.1073/pnas.1323607111 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sourakov A, Duehl A, Sourakov A (2012) Foraging behavior of the blue morpho and other tropical butterflies: the chemical and electrophysiological basis of olfactory preferences and the role of color. Psyche. doi: 10.1155/2012/378050 Google Scholar
  81. Sprengel C (1828) Von den Substanzen der Ackerkrume und des Untergrundes (About the substances in the plow layer and the subsoil). J für Tech und Ökonomische Chemie 3:93Google Scholar
  82. Stallard RF, Edmond JM (1981) Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9858. doi: 10.1029/JC086iC10p09844 CrossRefGoogle Scholar
  83. Studier EH, Sevick SH (1992) Live mass, water content, nitrogen and mineral levels in some insects from south-central lower Michigan. Comp Biochem Physiol 103:579–595. doi: 10.1016/0300-9629(92)90293-Y CrossRefGoogle Scholar
  84. Tardy Y, Bustillo V, Roquin C et al (2005) The Amazon. Bio-geochemistry applied to river basin management: part I. Hydro-climatology, hydrograph separation, mass transfer balances, stable isotopes, and modelling. Appl Geochemistry 20:1746–1829. doi: 10.1016/j.apgeochem.2005.06.001 CrossRefGoogle Scholar
  85. Townsend CR, Calow P (1981) Physiological ecology: an evolutionary approach to resource use. Sinauer Associates, SunderlandGoogle Scholar
  86. Vannette RL, Gauthier M-PL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc Lond B 280:20122601. doi: 10.1098/rspb.2012.2601 CrossRefGoogle Scholar
  87. Wahlberg N, Leneveu J, Kodandaramaiah U et al (2009) Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc R Soc Lond B 276:4295–4302. doi: 10.1098/rspb.2009.1303 CrossRefGoogle Scholar
  88. Watt W, Hoch P, Mills S (1974) Nectar resource use by Colias butterflies. Oecologia 14:353–374CrossRefGoogle Scholar
  89. White T (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, HeidelbergCrossRefGoogle Scholar
  90. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of BiologyStanford UniversityStanfordUSA
  2. 2.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations