Oecologia

, Volume 179, Issue 1, pp 281–292 | Cite as

Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

  • Nicole Wäschke
  • Christine Hancock
  • Monika Hilker
  • Elisabeth Obermaier
  • Torsten Meiners
Ecosystem ecology - Original research

Abstract

Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape.

Keywords

Plantago lanceolata Land use intensity index Iridoid glycosides Herbivore abundance Parasitoid abundance 

Supplementary material

442_2015_3347_MOESM1_ESM.doc (208 kb)
Supplementary material 1 (DOC 207 kb)

References

  1. Adam G, Khoi NH, Bergner C, Liens NT (1979) Plant growth inhibiting properties of plumieride from Plumeria obtusifolia. Phytochemistry 18:1399–1400. doi:10.1016/0031-9422(79)83035-6 CrossRefGoogle Scholar
  2. Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133. doi:10.1890/03-4084 CrossRefGoogle Scholar
  3. Baden CU, Franke S, Dobler S (2012) Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae). Chemoecology 22:113–118. doi:10.1007/s00049-012-0103-0 CrossRefGoogle Scholar
  4. Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x CrossRefPubMedGoogle Scholar
  5. Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20. doi:10.1103/PhysRevB.85.134407 CrossRefGoogle Scholar
  6. Barton KE, Bowers MD (2006) Neighbor species differentially alter resistance phenotypes in Plantago. Oecologia 150:442–452. doi:10.1007/s00442-006-0531-z CrossRefPubMedGoogle Scholar
  7. Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892. doi:10.2307/1941237 CrossRefGoogle Scholar
  8. Blüthgen N, Dormann CF, Prati D, Klaus V, Kleinebecker T, Hölzl N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220. doi:10.1016/j.baae.2012.04.001 CrossRefGoogle Scholar
  9. Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, San Diego, pp 297–326CrossRefGoogle Scholar
  10. Bowers MD, Stamp NE (1992) Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J Chem Ecol 18:985–995. doi:10.1007/BF00980057 CrossRefPubMedGoogle Scholar
  11. Bowers MD, Stamp NE (1993) Effect of plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791. doi:10.2307/1939936 CrossRefGoogle Scholar
  12. Brodbeck BV, Mizzel RF, French WJ, Anderson PC, Aldrich JH (1990) Amino acids as determinants of host preference for the xylem feeding leafhopper, Homalodisca coagulate (Homoptera: Cicadellidae). Oecologia 83:338–345. doi:10.1007/BF00317557 CrossRefGoogle Scholar
  13. Broz AK, Broeckling CD, De-la-Peña C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM (2010) Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:115. doi:10.1186/1471-2229-10-115 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Bukovinszky T, Poelman EH, Gols R, Prekatsakis G, Vet LEM, Harvey JA, Dicke M (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160:299–308. doi:10.1007/s00442-009-1308-y CrossRefPubMedGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  16. Cease AJ, Elser JJ, Fored CF, Hao S, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467–469. doi:10.1126/science.1214433 CrossRefPubMedGoogle Scholar
  17. Chin WW, Newsted PR (1999) Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research. In: Hoyle R (ed) Statistical strategies for small sample research. Sage, Thousand Oaks, pp 307–341Google Scholar
  18. Cipollini DF, Bergelson J (2001) Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. J Chem Ecol 27:593–610. doi:10.1023/A:1010384805014 CrossRefPubMedGoogle Scholar
  19. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  20. Darrow K, Bowers MD (1999) Effects of herbivore damage and nutrient level on induction of iridoid glycosides in Plantago lanceolata. J Chem Ecol 25:1427–1440. doi:10.1023/A:1020991229072 CrossRefGoogle Scholar
  21. De Deyn GB, Biere A, van der Putten WH, Wagenaar R, Klironomos JN (2009) Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160:433–442. doi:10.1007/s00442-009-1312-2 CrossRefPubMedGoogle Scholar
  22. Dicke M, van Poecke RMP (2002) Signalling in plant-insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction. University Press, Oxford, pp 289–316Google Scholar
  23. Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds—the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604. doi:10.1016/j.phytochem.2011.04.015 CrossRefPubMedGoogle Scholar
  24. Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X (2001) Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology 122:563–569CrossRefPubMedGoogle Scholar
  25. Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241. doi:10.1007/s004420000365 CrossRefGoogle Scholar
  26. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi:10.1016/j.baae.2010.07.009 CrossRefGoogle Scholar
  27. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Stuart Chapin F, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Colin Prentice I, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  28. Freude H, Harde KW, Lohse GA (1983) Die Käfer Mitteleuropas, vol 11. Goecke and Evers, KrefeldGoogle Scholar
  29. Gols R, Harvey JA (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8:187–206. doi:10.1007/s11101-008-9104-6 CrossRefGoogle Scholar
  30. Gols R, van Dam NM, Raaijmakers CE, Dicke M, Harvey JA (2009) Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps? Oikos 118:733–743. doi:10.1111/j.1600-0706.2008.17231.x CrossRefGoogle Scholar
  31. Hancock C, Wäschke N, Schumacher U, Linsenmair KE, Meiners T, Obermaier E (2013) Fertilizer application decreases insect abundance on Plantago lanceolata—a large scale experiment in three geographic regions. Arthropod Plant Interact 7:147–158. doi:10.1007/s11829-012-9237-9 CrossRefGoogle Scholar
  32. Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144. doi:10.1016/j.tree.2009.09.010 CrossRefPubMedGoogle Scholar
  33. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398. doi:10.4039/Ent91385-7 CrossRefGoogle Scholar
  34. Joern A, Behmer ST (1998) Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecol Entomol 23:174–184. doi:10.1046/j.1365-2311.1998.00112.x CrossRefGoogle Scholar
  35. Joshi J, Otway SJ, Koricheva J, Pfisterer AB, Alphei J, Roy BA, Scherer-Lorenzen M, Schmid B, Spehn EM, Hector A (2004) Bottom-up effects and feedbacks in simple and diverse experimental grassland communities. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 115–134CrossRefGoogle Scholar
  36. Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15:126–132. doi:10.1016/j.tplants.2009.11.007 CrossRefPubMedGoogle Scholar
  37. Kock N (2010) Using WarpPLS in e-collaboration studies: an overview of five main analysis steps. Int J e-Collab 6:1–11. doi:10.4018/jec.2010100101 CrossRefGoogle Scholar
  38. Kock N (2012) WarpPLS 3.0 user manual. ScriptWarp Systems, LaredoGoogle Scholar
  39. Kos M, Broekgaarden C, Kabouw P, Lenferink KO, Poelman EH, Vet LEM, Dicke M, van Loon JJA (2011) Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Funct Ecol 25:1113–1124. doi:10.1111/j.1365-2435.2011.01871 CrossRefGoogle Scholar
  40. Lampert EC, Dyer LA, Bowers MD (2010) Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae. J Chem Ecol 36:992–998. doi:10.1007/s10886-010-9840-0 CrossRefPubMedGoogle Scholar
  41. Marak HB, Biere A, Van Damme JMM (2000) Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J Evol Biol 13:985–996. doi:10.1046/j.1420-9101.2000.00233.x CrossRefGoogle Scholar
  42. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. doi:10.1146/annurev.es.11.110180.001003 CrossRefGoogle Scholar
  43. Mohd Norowi H, Perry JN, Powell W, Rennolls K (2000) The effect of spatial scale on interactions between two weevils and their parasitoid. Ecol Entomol 25:188–196. doi:10.1046/j.1365-2311.2000.00242.x CrossRefGoogle Scholar
  44. Mraja A, Unsicker SB, Reichelt M, Gershenzon J, Roscher C (2011) Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata. PLoS One 6(12):e28055. doi:10.1371/journal.pone.0028055 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185. doi:10.1146/annurev.ento.51.110104.151110 CrossRefPubMedGoogle Scholar
  46. Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154. doi:10.1007/s00049-009-0018-6 CrossRefGoogle Scholar
  47. Page JE, Madriñán S, Towers GHN (1994) Identification of a plant growth inhibiting iridoid lactone from Duroia hirsuta, the allelopathic tree of the Devil’s garden. Experientia 50:840–842. doi:10.1007/BF01956467 CrossRefGoogle Scholar
  48. Pardo F, Perich F, Torres R, Delle Monache F (1998) Phytotoxic iridoid glucosides from the roots of Verbascum thapsus. J Chem Ecol 24:645–653. doi:10.1023/A:1022338118561 CrossRefGoogle Scholar
  49. Petermann JS, Müller CB, Weigelt A, Weisser WW, Schmid B (2010) Effect of plant species loss on aphid–parasitoid communities. J Anim Ecol 79:709–720. doi:10.1111/j.1365-2656.2010.01674.x CrossRefPubMedGoogle Scholar
  50. Poelman EH, van Loon JJA, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci 13:534–541. doi:10.1016/j.tplants.2008.08.003 CrossRefPubMedGoogle Scholar
  51. Prudic KL, Oliver JC, Bowers MD (2005) Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143:578–587. doi:10.1007/s00442-005-0008-5 CrossRefPubMedGoogle Scholar
  52. Quintero C, Bowers MD (2012) Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Oecologia 168:471–481. doi:10.1007/s00442-011-2114-x CrossRefPubMedGoogle Scholar
  53. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  54. Randlkofer B, Obermaier E, Meiners T (2007) Mother’s choice of the oviposition site: balancing risk of egg parasitism and need of food supply for the progeny with an infochemical shelter? Chemoecology 17:177–186. doi:10.1007/s00049-007-0377-9 CrossRefGoogle Scholar
  55. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124. doi:10.2307/1942161 CrossRefGoogle Scholar
  56. Sarfraz M, Dosdall LM, Keddie BA (2009a) Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol Control 51:34–41. doi:10.1016/j.biocontrol.2009.07.004 CrossRefGoogle Scholar
  57. Sarfraz M, Dosdall LM, Keddie BA (2009b) Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. Eur J Entomol 106:583–594CrossRefGoogle Scholar
  58. Scherber C, Mwangi PN, Temperton VM, Roscher C, Schumacher J, Schmid B, Weisser WW (2006) Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147:489–500. doi:10.1007/s00442-005-0281-3 CrossRefPubMedGoogle Scholar
  59. Scherling C, Roscher C, Giavalisco P, Schulze E-D, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5(9):e12569. doi:10.1371/journal.pone.0012569 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Schmitz O (2010) Resolving ecosystem complexity. Monogr Popul Biol 47. Princeton University Press, New JerseyGoogle Scholar
  61. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. University Press, OxfordGoogle Scholar
  62. Schubert R, Vent W (1990) Exkursionsflora von Deutschland 4, 8th edn. Volk und Wissen, BerlinGoogle Scholar
  63. Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628. doi:10.1016/j.tree.2006.07.003 CrossRefPubMedGoogle Scholar
  64. Sheehan W (1986) Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Environ Entomol 15:456–461CrossRefGoogle Scholar
  65. Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12:612–621. doi:10.1111/j.1461-0248.2009.01309.x CrossRefPubMedGoogle Scholar
  66. Spiegelberger T, Matthies D, Müller-Schärer H, Schaffner U (2006) Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29:541–548CrossRefGoogle Scholar
  67. Thompson SN (1999) Nutrition and culture of entomophagous insects. Annu Rev Entomol 44:561–592. doi:10.1146/annurev.ento.44.1.561 CrossRefPubMedGoogle Scholar
  68. Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133. doi:10.1007/s10021-003-0225-x CrossRefGoogle Scholar
  69. Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150:233–246. doi:10.1007/s00442-006-0511-3 CrossRefPubMedGoogle Scholar
  70. Weisser WW, Siemann E (2004) The various effects of insects on ecosystem functioning. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 3–24CrossRefGoogle Scholar
  71. White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, BerlinCrossRefGoogle Scholar
  72. Williams IS (1999) Slow-growth, high-mortality—a general hypothesis, or is it? Ecol Entomol 24:490–495. doi:10.1046/j.1365-2311.1999.00217.x CrossRefGoogle Scholar
  73. Wurst S, Wagenaar R, Biere A, van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant Soil 329:117–126. doi:10.1007/s11104-009-0139-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nicole Wäschke
    • 1
    • 3
  • Christine Hancock
    • 2
  • Monika Hilker
    • 1
  • Elisabeth Obermaier
    • 2
    • 4
  • Torsten Meiners
    • 1
    • 5
  1. 1.Dahlem Centre of Plant Sciences, Institute of Biology, Applied Zoology/Animal EcologyFreie Universität BerlinBerlinGermany
  2. 2.Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
  3. 3.Plant Protection Biology, Chemical EcologySveriges lantbruksuniversitetAlnarpSweden
  4. 4.Ecological-Botanical GardensUniversity of BayreuthBayreuthGermany
  5. 5.Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations