Oecologia

, Volume 179, Issue 1, pp 249–259 | Cite as

Soil biota effects on local abundances of three grass species along a land-use gradient

  • J. Heinze
  • T. Werner
  • E. Weber
  • M. C. Rillig
  • J. Joshi
Community ecology - Original research

Abstract

Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant–plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant–plant interactions and therefore influence plant-species abundances and diversity in grasslands.

Keywords

Biodiversity Grassland Land-use intensity Community composition Plant-soil feedback 

Notes

Acknowledgments

We thank Edith Allen and two anonymous reviewers for constructive comments on the manuscript. We also thank Torsten Meene for help in the field, Sarah Schneider, Norbert Syska, Jörg Müller and Benjamin Radau for help in the greenhouse and Peter Manning and Joana Bergmann for helpful comments on the manuscript. Furthermore we thank the managers of the three exploratories, Swen Renner, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Simone Pfeiffer, Christiane Fischer and Ilka Mai for providing support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been (partly) funded by the Deutsche Forschungsgesellschaft (DFG) Priority Program 1374 Infrastructure-Biodiversity-Exploratories and by the DFG-project SOILFEEDBACK (JO 777/3-1). Fieldwork permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). The experiments comply with the current laws of the country (Germany) in which the experiments were performed.

Supplementary material

442_2015_3336_MOESM1_ESM.pdf (10.7 mb)
Supplementary material 1 (PDF 10912 kb)

References

  1. Allan E, Bossdorf O, Dormann CF, Prati D, Gossner M, Tscharntke T, Blüthgen N, Bellach M, Birkhofer K, Boch S, Böhm S, Börschig C, Chatzinotas A, Christ S, Daniel R, Diekötter T, Fischer C, Friedl T, Glaser K, Hallmann C, Hodac L, Hölzel N, Jung K, Klein AM, Klaus VH, Kleinebecker T, Krauss J, Lange M, Morris EK, Müller J, Nacke H, Pašalić E, Rillig MC, Rothenwöhrer C, Schall P, Scherber C, Schulze W, Socher S, Steckel J, Steffan-Dewenter I, Türcke M, Weiner CN, Werner M, Westphal C, Wolters V, Wubet T, Gockel S, Gorke M, Hemp A, Renner SC, Schöning I, Pfeiffer S, König-Ries B, Buscot F, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2014) Inter-annual variation in land use intensity enhances grassland multidiversity. PNAS 111:308–313. doi:10.1073/pnas.1312213111 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Allen EB, Allen MF (1984) Competition between plants of different successional stages: mycorrhizae as regulators. Can J Bot 62:2625–2629. doi:10.1139/b84-356 CrossRefGoogle Scholar
  3. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88. doi:10.1038/nature12911 CrossRefPubMedGoogle Scholar
  4. Bartelt-Ryser J, Joshi J, Schmid B, Brandl H, Balser T (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect Plant Ecol Evol Syst 7:27–49. doi:10.1016/j.ppees.2004.11.002 CrossRefGoogle Scholar
  5. Beddows AR (1959) Dactylis glomerata L. J Ecol 47:223–239CrossRefGoogle Scholar
  6. Beddows AR (1967) Lolium perenne L. J Ecol 55:567–587CrossRefGoogle Scholar
  7. Bengtsson J, Fagerström T, Rydin H (1994) Competition and coexistence in plant communities. Trends Ecol Evol 9:246–250. doi:10.1016/0169-5347(94)90289-5 CrossRefPubMedGoogle Scholar
  8. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473. doi:10.1046/j.1469-8137.2003.00714.x CrossRefGoogle Scholar
  9. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573. doi:10.2307/2960528 CrossRefGoogle Scholar
  10. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos JN, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi:10.1016/j.tree.2010.05.004 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220. doi:10.1016/j.baae.2012.04.001 CrossRefGoogle Scholar
  12. Bonanomi G, Giannino F, Mazzoleni S (2005) Negative plant-soil feedback and species coexistence. Oikos 111:311–321. doi:10.1111/j.0030-1299.2005.13975.x CrossRefGoogle Scholar
  13. Brinkmann EP, van der Putten WH, Bakker E-J, Verhoeven KJF (2010) Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073. doi:10.1111/j.1365-2745.2010.01695.x CrossRefGoogle Scholar
  14. Casper BB, Castelli JP (2007) Evaluating plant-soil feedbacks together with competition in a serpentine grassland. Ecol Lett 10:394–400. doi:10.1111/j.1461-0248.2007.01030.x CrossRefPubMedGoogle Scholar
  15. Collins CD, Foster BL (2009) Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90:2567–2576. doi:10.1890/08-1560.1 CrossRefPubMedGoogle Scholar
  16. Crain CM, Kroeker K, Halpern S (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315. doi:10.1111/j.1461-0248.2008.01253.x CrossRefPubMedGoogle Scholar
  17. Darling ES, Côté IM (2008) Quantifying the evidence for ecological synergies. Ecol Lett 11:1278–1286. doi:10.1111/j.1461-0248.2008.01243.x CrossRefPubMedGoogle Scholar
  18. De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713. doi:10.1038/nature01548 CrossRefPubMedGoogle Scholar
  19. De la Peña E, de Clercq N, Bonte D, Roiloa S, Rodriguez-Echeverria S, Freitas H (2010) Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis. Biol Invasions 12:3637–3648. doi:10.1007/s10530-010-9756-1 CrossRefGoogle Scholar
  20. Dimitrakopoulos PG, Schmid B (2004) Biodiversity effects increase linearly with biotope space. Ecol Lett 7:574–583. doi:10.1111/j.1461-0248.2004.00607.x CrossRefGoogle Scholar
  21. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115. doi:10.1146/annurev.energy.30.050504.144212 CrossRefGoogle Scholar
  22. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl Ecol 11:473–485. doi:10.1016/j.baae.2010.07.009 CrossRefGoogle Scholar
  23. Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125. doi:10.1111/j.1469-8137.1977.tb02187.x CrossRefGoogle Scholar
  24. Folt CL, Chen CY, Moore MV, Burnaford J (1999) Synergism and antagonism among multiple stressors. Limnol Oceanogr 44:864–877. doi:10.4319/lo.1999.44.3_part_2.0864 CrossRefGoogle Scholar
  25. Fukami T, Nakajima M (2013) Complex plant-soil interactions enhance plant species diversity by delaying community convergence. J Ecol 101:316–324. doi:10.1111/1365-2745.12048 CrossRefGoogle Scholar
  26. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  27. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  28. Gross N, Le Bagousse-Pinguet Y, Liancourt P, Urcelay C, Catherine R, Lavorel S (2010) Trait-mediated effect of arbuscular mycorrhiza on the competitive effect and response of a monopolistic species. Funct Ecol 24:1122–1132. doi:10.1111/j.1365-2435.2010.01713.x CrossRefGoogle Scholar
  29. Gustafson DJ, Casper BB (2004) Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant Soil 259:9–17CrossRefGoogle Scholar
  30. Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195. doi:10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2Google Scholar
  31. Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81:787–795CrossRefGoogle Scholar
  32. Hautier Y, Niklas PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. doi:10.1126/science.1169640 CrossRefPubMedGoogle Scholar
  33. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156. doi:10.2307/177062 CrossRefGoogle Scholar
  34. Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875. doi:10.1111/1365-2435.12002 CrossRefGoogle Scholar
  35. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585. doi:10.1046/j.1469-8137.1997.00729.x CrossRefGoogle Scholar
  36. Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2009) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. PNAS 107:2093–2098. doi:10.1073/pnas.0906710107 CrossRefGoogle Scholar
  37. Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088. doi:10.1111/j.1461-0248.2006.00953.x CrossRefPubMedGoogle Scholar
  38. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness incommunities. Nature 417:67–70. doi:10.1038/417067a CrossRefPubMedGoogle Scholar
  39. Klötzli F, Dietl W, Marti K, Schubiger-Bosshard C, Walther G-R (2010) Vegetation Europas—Das Offenland im vegetationskundlich-ökologischen Überblick. Ott, BernGoogle Scholar
  40. Kneis D, Knoesche R, Bronstert A (2006) Analysis and simulation of nutrient retention and management for a lowland river-lake system. Hydrol Earth Syst Sc 10:575–588CrossRefGoogle Scholar
  41. Kruess A, Tscharntke T (2002) Contrasting responses of plant and insect diversity to variation in grazing intensity. Biol Conserv 106:293–302. doi:10.1016/S0006-3207(01)00255-5 CrossRefGoogle Scholar
  42. Kulmatiski A, Heavilin J, Beard KH (2011) Testing predictions of a three-species plant-soil feedback model. J Ecol 99:542–550. doi:10.1111/j.1365-2745.2010.01784.x Google Scholar
  43. Kulmatiski A, Anderson-Smith A, Beard K, Doucette-Riise S, Mazzacavallo M, Nolan NE, Ramirez RA, Stevens JR (2014) Most soil trophic guilds increase plant growth: a meta-analytic review. Oikos 123:1409–1419. doi:10.1111/oik.01767 CrossRefGoogle Scholar
  44. Lepš J (1999) Nutrient status, disturbance and competition: an experimental test of relationship in a wet meadow. J Veg Sci 10:219–230. doi:10.2307/3237143 CrossRefGoogle Scholar
  45. Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755. doi:10.1038/nature09273 CrossRefPubMedGoogle Scholar
  46. Manning P, Morrison SA, Bonkowski M, Bardgett RD (2008) Nitrogen enrichment modifies plant community structure via changes to plant-soil feedback. Oecologia 157:661–673. doi:10.1007/s00442-008-1104-0 CrossRefPubMedGoogle Scholar
  47. Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41. doi:10.1111/j.1461-0248.2010.01547.x CrossRefPubMedGoogle Scholar
  48. Neter J, Wassermann W (1974) Applied linear statistical models. Irwin, HomewoodGoogle Scholar
  49. Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008) Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89:2399–2406. doi:10.1890/07-2056.1 CrossRefPubMedGoogle Scholar
  50. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  51. Reinhart KO (2012) The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands. Ecology 93:2377–2385. doi:10.1890/12-0486.1 CrossRefPubMedGoogle Scholar
  52. Revilla TA, Veen GF, Eppinga MB, Weissing FJ (2013) Plant-soil feedbacks and the coexistence of competing plants. Theor Ecol 6:99–113. doi:10.1007/s12080-012-0163-3 CrossRefGoogle Scholar
  53. Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880. doi:10.1111/j.1469-8137.2005.01455.x CrossRefPubMedGoogle Scholar
  54. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  55. Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PR, Xiao K, Rillig MC, Siker BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant–diversity pattern. Ecology 92:296–303. doi:10.1890/10-0773.1 CrossRefPubMedGoogle Scholar
  56. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi:10.1038/23932 CrossRefGoogle Scholar
  57. Van der Heijden MGA, Bardgett RD, van Straalen NM (2008a) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  58. Van der Heijden MGA, Verkade S, de Bruin SJ (2008b) Mycorrhizal fungi reduce the negative effects if nitrogen enrichment on plant community structure in dune grassland. Global Change Biol 14:2626–2635. doi:10.1111/j.1365-2486.2008.01691.x Google Scholar
  59. Van der Putten WH, van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56. doi:10.1038/362053a0 CrossRefGoogle Scholar
  60. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi:10.1111/1365-2745.12054 CrossRefGoogle Scholar
  61. Van Grunsven RHA, van der Putten WH, Bezemer TM, Veenendaal EM (2010) Plant-soil feedback of native and range-expending plant species is insensitive to temperature. Oecologia 162:1059–1069. doi:10.1007/s00442-009-1526-3 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Veresoglou S, Rillig MC (2013) Accounting for the adaptation deficit of non-mycorrhizal plants in experiments. Plant Soil 366:33–34. doi:10.1007/s11104-013-1703-3 CrossRefGoogle Scholar
  63. Wang B, Qui Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. doi:10.1007/s00572-005-0033-6 CrossRefPubMedGoogle Scholar
  64. Watkinson AR, Freckleton RP (1997) Quantifying the impact of arbuscular mycorrhiza on plant competition. J Ecol 85:541–545CrossRefGoogle Scholar
  65. West HM (1996) Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J Ecol 84:429–438CrossRefGoogle Scholar
  66. Wolf DC, Dao TH, Scott HD, Lavy TL (1989) Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J Environ Qual 18:39–44CrossRefGoogle Scholar
  67. Zechmeister HG, Schmitzberger I, Steurer B, Peterseil J, Wrbka T (2003) The influence of land-use practices and economics on plant species richness in meadows. Biol Cons 114:165–177. doi:10.1016/S0006-3207(03)00020-X CrossRefGoogle Scholar
  68. Zuppinger-Dingley D, Schmid B, Chen Y, Brandl H, van der Heijden MGA, Joshi J (2011) In their native range, invasive plants are held in check by negative soil-feedbacks. Ecosphere 2:1–12. doi:10.1890/ES11-00061.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Heinze
    • 1
    • 3
  • T. Werner
    • 1
  • E. Weber
    • 1
  • M. C. Rillig
    • 2
    • 3
  • J. Joshi
    • 1
    • 3
  1. 1.Biodiversity Research/Botany, Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Dahlem Centre of Plant Science (DCPS), Institute for BiologyFreie Universität BerlinBerlinGermany
  3. 3.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany

Personalised recommendations