Advertisement

Oecologia

, Volume 179, Issue 1, pp 29–41 | Cite as

Nest-dwelling ectoparasites reduce antioxidant defences in females and nestlings of a passerine: a field experiment

  • Jimena López-Arrabé
  • Alejandro Cantarero
  • Lorenzo Pérez-Rodríguez
  • Antonio Palma
  • Carlos Alonso-Alvarez
  • Sonia González-Braojos
  • Juan Moreno
Physiological ecology - Original research

Abstract

Ectoparasites may imply a cost in terms of oxidative stress provoked by inflammatory responses in hosts. Ectoparasites may also result in costs for nestlings and brooding females because of the direct loss of nutrients and reduced metabolic capacity resulting from parasite feeding activities. These responses may involve the production of reactive oxygen and nitrogen species that may induce oxidative damage in host tissues. Our goal was to examine the effect of ectoparasites in terms of oxidative stress for nestlings and adult females in a population of pied flycatchers Ficedula hypoleuca. We manipulated the entire nest ectoparasite community by reducing ectoparasite loads in some nests through a heating treatment and compared them with a control group of nests with natural loads. A marker of total antioxidant capacity (TAS) in plasma and total levels of glutathione (tGSH) in red blood cells as well as a marker of oxidative damage in plasma lipids (malondialdehyde; MDA) were assessed simultaneously. Levels of tGSH were higher in heat-treated nests than in controls for both females and nestlings. Higher TAS values were observed in females from heat-treated nests. In nestlings there was a negative correlation between TAS and MDA. Our study supports the hypothesis that ectoparasites expose cavity-nesting birds to an oxidative challenge. This could be paid for in the long term, ultimately compromising individual fitness.

Keywords

Antioxidant status Glutathione Malondialdehyde Oxidative stress Pied flycatcher 

Notes

Acknowledgments

This study was financed by project CGL2010-19233-C03-02 to J. M. from the Spanish Ministerio de Ciencia e Innovación (MICINN). A. C. was supported by a FPU grant from the Ministerio de Educación, Ciencia y Deporte (MECD) and S. G.-B. and J. L.-A. by FPI grants from MICINN. L. P.-R. was supported by a postdoctoral contract from the Spanish Ministerio de Economía y Competitividad (MINECO), through the Severo Ochoa Programme for Centres of Excellence in R&D&I (SEV-2012-0262). Permissions for handling birds were provided by the Consejería de Medio Ambiente de Castilla y León, and J. Donés and M. Redondo of the Centro Montes de Valsaín allowed us to work in the study area. We thank E. Jiménez-Vaquero, S. Merino and E. Pérez-Badás for collaboration in the field. We are also grateful to Jonathan D. Blount for initial advice on the analysis of MDA levels. This study is a contribution to the research developed at the El Ventorrillo field station. The experiments comply with current Spanish laws, and grant holder and field researchers were officially licensed for animal manipulation following current EU regulations on animal manipulation (authorization types C and B).

References

  1. Agarwal R, Chase SD (2002) Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples. J Chromatogr B 775:121–126CrossRefGoogle Scholar
  2. Alonso-Alvarez C, Ferrer M (2001) A biochemical study of fasting, subfeeding, and recovery processes in yellow-legged gulls. Physiol Biochem Zool 74:703–713PubMedCrossRefGoogle Scholar
  3. Alonso-Alvarez C, Galván I (2011) Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits. PloS One 6:e19403PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alonso-Alvarez C, Velando A (2012) Benefits and costs of parental care. In: Royle NJ, Smiseth PT, Kolliker M (eds) The evolution of parental care. Oxford University Press, Oxford, pp 40–61CrossRefGoogle Scholar
  5. Atkinson CT, van Riper C (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M (eds) Bird-parasite interactions: ecology, evolution and behaviour. Oxford University Press, New York, pp 19–48Google Scholar
  6. Baron RW, Weintraub J (1987) Immunological responses to parasitic arthropods. Parasitol Today 3:77–82PubMedCrossRefGoogle Scholar
  7. Bauchau V (1997) Do parasitic mites decrease growth of nestling pied flycatchers Ficedula hypoleuca? Ardea 85:243–247Google Scholar
  8. Bertrand S, Criscuolo F, Faivre B, Sorci G (2006) Immune activation increases susceptibility to oxidative tissue damage in zebra finches. Funct Ecol 20:1022–1027CrossRefGoogle Scholar
  9. Blount JD, Houston DC, Surai PF, Møller AP (2004) Egg–laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc R Soc Lond B Biol Sci 271:S79–S81CrossRefGoogle Scholar
  10. Brommer JE, Pitala N, Siitari H, Kluen E, Gustafsson L (2011) Body size and immune defense of nestling blue tits (Cyanistes caeruleus) in response to manipulation of ectoparasites and food supply. Auk 128:556–563CrossRefGoogle Scholar
  11. Calabrese EJ (2007) Threshold dose-response model-RIP: 1911 to 2006. BioEssays 29:686–688PubMedCrossRefGoogle Scholar
  12. Cantarero A, López-Arrabé J, Redondo AJ, Moreno J (2013a) Behavioural responses to ectoparasites in pied flycatchers Ficedula hypoleuca: an experimental study. J Avian Biol 44:591–599CrossRefGoogle Scholar
  13. Cantarero A, López-Arrabé J, Rodríguez-García V, González-Braojos S, Ruiz-de-Castañeda R, Redondo AJ, Moreno J (2013b) Factors affecting the presence and abundance of generalist ectoparasites in nests of three sympatric hole-nesting bird species. Acta Ornithol 48:39–54CrossRefGoogle Scholar
  14. Christe P, Richner H, Oppliger A (1996) Of great tits and fleas: sleep baby sleep. Anim Behav 52:1087–1092CrossRefGoogle Scholar
  15. Cohen J (1992) A power primer. Psychol Bull 112:155–159PubMedCrossRefGoogle Scholar
  16. Cohen A, Klasing K, Ricklefs R (2007) Measuring circulating antioxidants in wild birds. Comp Biochem Physiol B 147:110–121PubMedCrossRefGoogle Scholar
  17. Collias NE, Collias EC (1984) Nest building and bird behavior. Princeton University Press, PrincetonCrossRefGoogle Scholar
  18. Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238–1251PubMedGoogle Scholar
  19. Costantini D (2011) On the measurement of circulating antioxidant capacity and the nightmare of uric acid levels. Method Ecol Evol 2:321–325CrossRefGoogle Scholar
  20. Costantini D, Møller AP (2009) Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A 153:339–344CrossRefGoogle Scholar
  21. Costantini D, dell’Ariccia G, Lipp HP (2008) Long flights and age affect oxidative status of homing pigeons (Columba livia). J Exp Biol 211:377–381PubMedCrossRefGoogle Scholar
  22. Costantini D, Monaghan P, Metcalfe NB (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447PubMedCrossRefGoogle Scholar
  23. de Ayala RM, Saino N, Møller AP, Anselmi C (2007) Mouth coloration of nestlings covaries with offspring quality and influences parental feeding behavior. Behav Ecol 18:526–534CrossRefGoogle Scholar
  24. de Coster G, de Neve L, Verhulst S, Lens L (2012) Maternal effects reduce oxidative stress in female nestlings under high parasite load. J Avian Biol 43:177–185CrossRefGoogle Scholar
  25. Demas GE, Chefer V, Talan MI, Nelson RJ (1997) Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6 J mice. Am J Physiol 273:R1631–R1637PubMedGoogle Scholar
  26. Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43:200–227PubMedCrossRefGoogle Scholar
  27. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc Lond B Biol Sci 276:1737–1745CrossRefGoogle Scholar
  28. Dugas MB (2012) Cross-fostering reveals that among-brood differences in ornamental mouth coloration mostly reflect rearing conditions in nestling house sparrows. Biol J Linn Soc 106:169–179CrossRefGoogle Scholar
  29. Edward DA, Chapman T (2011) Mechanisms underlying reproductive trade-offs: costs of reproduction. In: Flatt T, Heyland A (eds) Mechanisms of life history evolution. Oxford University Press, Oxford, pp 137–152CrossRefGoogle Scholar
  30. Eeva T, Lehikoinen E, Nurmi J (1994) Effects of ectoparasites on breeding success of great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in an air-pollution gradient. Can J Zool 72:624–635CrossRefGoogle Scholar
  31. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  32. Fitze PS, Clobert J, Richner H (2004a) Long-term life-history consequences of ectoparasite-modulated growth and development. Ecology 85:2018–2026CrossRefGoogle Scholar
  33. Fitze PS, Tschirren B, Richner H (2004b) Life history and fitness consequences of ectoparasites. J Anim Ecol 73:216–226CrossRefGoogle Scholar
  34. Galván I, Alonso-Alvarez C (2008) An intracellular antioxidant determines the expression of a melanin-based signal in a bird. PLoS One 3:e3335PubMedCentralPubMedCrossRefGoogle Scholar
  35. Galván I, Alonso-Alvarez C (2009) The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proc R Soc Lond B Biol Sci 276:3089–3097CrossRefGoogle Scholar
  36. García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J Anim Ecol 70:708–711CrossRefGoogle Scholar
  37. Golden TR, Hinerfeld DA, Melov S (2002) Oxidative stress and aging: Beyond correlation. Aging Cell 1:117–123PubMedCrossRefGoogle Scholar
  38. González-Braojos S, Vela AI, Ruiz-de-Castañeda R, Briones V, Cantarero A, Moreno J (2012) Is nestling growth affected by nest reuse and skin bacteria in pied flycatchers Ficedula hypoleuca? Acta Ornithol 47:119–127CrossRefGoogle Scholar
  39. Goodenough AE, Stallwood B (2010) Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of blue tit (Cyanistes caeruleus) and great tit (Parus major) nests. Microb Ecol 59:221–232PubMedCrossRefGoogle Scholar
  40. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radical Bio Med 27:922–935CrossRefGoogle Scholar
  41. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  42. Heeb P, Werner I, Kölliker M, Richner H (1998) Benefits of induced host responses against an ectoparasite. Proc R Soc Lond B Biol Sci 265:51–56CrossRefGoogle Scholar
  43. Heeb P, Kölliker M, Richner H (2000) Bird-ectoparasite interactions, nest humidity, and ectoparasite community structure. Ecology 81:958–968Google Scholar
  44. Helfenstein F, Losdat S, Møller AP, Blount JD, Richner H (2010) Sperm of colourful males are better protected against oxidative stress. Ecol Lett 13:213–222PubMedCrossRefGoogle Scholar
  45. Hõrak P, Saks L, Karu U, Ots I, Surai PF, McGraw KJ (2004a) How coccidian parasites affect health and appearance of greenfinches. J Anim Ecol 73:935–947CrossRefGoogle Scholar
  46. Hõrak P, Surai PF, Ots I, Møller AP (2004b) Fat soluble antioxidants in brood-rearing great tits Parus major: relations to health and appearance. J Avian Biol 35:63–70CrossRefGoogle Scholar
  47. Hõrak P, Zilmer M, Saks L, Ots I, Karu U, Zilmer K (2006) Antioxidant protection, carotenoids and the costs of immune challenge in greenfinches. J Exp Biol 209:4329–4338PubMedCrossRefGoogle Scholar
  48. Hõrak P, Saks L, Zilmer M, Karu U, Zilmer K (2007) Do dietary antioxidants alleviate the cost of immune activation? An experiment with greenfinches. Am Nat 170:625–635PubMedCrossRefGoogle Scholar
  49. Isaksson C, Örnborg J, Stephensen E, Andersson S (2005) Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2:138–146CrossRefGoogle Scholar
  50. Jenni-Eiermann S, Jenni L (1998) What can plasma metabolites tell us about the metabolism, physiological state and condition of individual birds? An overview. Biol Conserv Fauna 102:312–319Google Scholar
  51. Lambrechts MM, Adriaensen F, Ardia DR, Artemyev AV, Atiénzar F, Bánbura J, Barba E, Bouvier J-C, Camprodon J, Cooper CB, Dawson RD, Eens M, Eeva T, Faivre B, Garamszegi LZ, Goodenough AE, Gosler AG, Grégoire A, Griffith SC, Gustafsson L, Scott-Johnson L, Kania W, Keišs O, Llambias PE, Mainwaring MC, Mänd R, Massa B, Mazgajski TD, Møller AP, Moreno J, Naef-Daenzer B, Nilsson J-A, Norte AC, Orell M, Otter KA, Park CR, Perrins CM, Pinowski J, Porkert J, Potti J, Remeš V, Richner H, Rytkönen S, Shiao M-T, Silverin B, Slagsvold T, Smith HG, Sorace A, Stenning MJ, Stewart I, Thompson CF, Török J, Tryjanowski P, van Noordwijk AJ, Winkler DW, Ziane N (2010) The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol 45:1–26CrossRefGoogle Scholar
  52. Lesgards JF, Durand P, Lassarre M, Stocker P, Lesgards G, Lanteaume A, Prost M, Lehucher-Michel MP (2002) Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ Health Persp 110:479CrossRefGoogle Scholar
  53. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121Google Scholar
  54. Lobato E, Moreno J, Merino S, Sanz JJ, Arriero E (2005) Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Écoscience 12:27–34CrossRefGoogle Scholar
  55. Lobato E, Merino S, Moreno J, Morales J, Tomás G, Martínez-de la Puente J, Osorno JL, Kuchar A, Möstl E (2008) Corticosterone metabolites in blue tit and pied flycatcher droppings: effects of brood size, ectoparasites and temperature. Horm Behav 53:295–305PubMedCrossRefGoogle Scholar
  56. Lundberg A, Alatalo RV (1992) The pied flycatcher. Poyser, LondonGoogle Scholar
  57. Martínez-de la Puente J, Merino S, Lobato E, Rivero-de Aguilar J, Del Cerro S, Ruiz-de-Castañeda R, Moreno J (2009) Does weather affect biting fly abundance in avian nests? J Avian Biol 40:653–657CrossRefGoogle Scholar
  58. Martínez-de la Puente J, Merino S, Lobato E, Rivero-de Aguilar J, del Cerro S, Ruiz-de-Castañeda R, Moreno J (2010) Nest-climatic factors affect the abundance of biting flies and their effects on nestling condition. Acta Oecol 36:543–547CrossRefGoogle Scholar
  59. Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, Martínez J (2011) Nest ectoparasites increase physiological stress in breeding birds: an experiment. Naturwissenschaften 98:99–106PubMedCrossRefGoogle Scholar
  60. Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B 827:76–82CrossRefGoogle Scholar
  61. McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18CrossRefGoogle Scholar
  62. Meister A (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther 51:155–194PubMedCrossRefGoogle Scholar
  63. Merino S, Potti J (1995) Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 73:95–103CrossRefGoogle Scholar
  64. Merino S, Potti J (1996) Weather dependent effects of nest ectoparasites on their bird hosts. Ecography 19:107–113CrossRefGoogle Scholar
  65. Merino S, Potti J (1998) Growth, nutrition and blow fly parasitism in nestling pied flycatchers. Can J Zool 76:936–941CrossRefGoogle Scholar
  66. Metcalfe NB, Alonso-Alvarez C (2010) Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol 24:984–996CrossRefGoogle Scholar
  67. Metcalfe NB, Monaghan P (2013) Does reproduction cause oxidative stress? An open question. Trends Ecol Evol 28:347–350PubMedCrossRefGoogle Scholar
  68. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407PubMedCrossRefGoogle Scholar
  69. Møller AP (1997) Parasitism and the evolution of host life history. In: Clayton DH, Moore J (eds) Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 105–127Google Scholar
  70. Møller AP, de Lope F, Moreno J, González G, Pérez JJ (1994) Ectoparasites and host energetics: house martin bugs and house martin nestlings. Oecologia 98:263–268CrossRefGoogle Scholar
  71. Møller AP, Christe P, Garamszegi LZ (2005) Coevolutionary arms races: increased host immune defense promotes specialization by avian fleas. J Evol Biol 18:46–59PubMedCrossRefGoogle Scholar
  72. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92PubMedCrossRefGoogle Scholar
  73. Moreno J, Merino S, Potti J, de León A, Rodríguez R (1999) Maternal energy expenditure does not change with flight costs or food availability in the pied flycatcher (Ficedula hypoleuca): costs and benefits for nestlings. Behav Ecol Sociobiol 46:244–251CrossRefGoogle Scholar
  74. Moreno J, Lobato E, Morales J, Merino S, Martínez-de La Puente J, Tomás G (2008) Pre-laying nutrition mediates maternal effects on offspring immune capacity and growth in the pied flycatcher. Oecologia 156:727–735PubMedCrossRefGoogle Scholar
  75. Moreno J, Merino S, Lobato E, Ruiz-de-Castañeda R, Martínez-de La Puente J, del Cerro S, Rivero-de Aguilar J (2009) Nest-dwelling ectoparasites of two sympatric hole-nesting passerines in relation to nest composition: An experimental study. Écoscience 16:418–427CrossRefGoogle Scholar
  76. Moreno-Rueda G, Redondo T, Trenzado CE, Sanz A, Zúñiga JM (2012) Oxidative stress mediates physiological costs of begging in magpie (Pica pica) nestlings. PLoS One 7:e40367PubMedCentralPubMedCrossRefGoogle Scholar
  77. Mougeot F, Martínez-Padilla J, Webster LM, Blount JD, Pérez-Rodríguez L, Piertney SB (2009) Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance. Proc R Soc Lond B Biol Sci 276:1093–1100CrossRefGoogle Scholar
  78. Noguera JC, Kim SY, Velando A (2011) Pre-fledgling oxidative damage predicts recruitment in a long-lived bird. Biol Lett 8:61–63PubMedCentralPubMedCrossRefGoogle Scholar
  79. Norte AC, Ramos JA, Araujo PM, Sousa JP, Sheldon BC (2008) Health-state variables and enzymatic biomarkers as survival predictors in nestling great tits (Parus major): effects of environmental conditions. Auk 125:943–952CrossRefGoogle Scholar
  80. Oppliger A, Richner H, Christe P (1994) Effect of an ectoparasite on lay date, nest-site choice, desertion, and hatching success in the great tit (Parus major). Behav Ecol 5:130–134CrossRefGoogle Scholar
  81. Owen JP, Delany ME, Cardona CJ, Bickford AA, Mullens BA (2009) Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (Ornithonyssus sylviarum). Int J Parasitol 39:789–799PubMedCrossRefGoogle Scholar
  82. Owen JP, Nelson AC, Clayton DH (2010) Ecological immunology of bird-ectoparasite systems. Trends Parasitol 26:530–539PubMedCrossRefGoogle Scholar
  83. Pap PL, Vágási CI, Czirják GÁ, Titilincu A, Pintea A, Osváth G, Fülöp A, Barta Z (2011) The effect of coccidians on the condition and immune profile of molting house sparrows (Passer domesticus). Auk 128:330–339CrossRefGoogle Scholar
  84. Pérez-Rodríguez L, Romero-Haro AA, Sternalski A, Muriel J, Mougeot F, Gil D, Alonso-Alvarez C (2015) Measuring oxidative stress: the confounding effect of lipid concentration in measures of lipid peroxidation. Physiol Biochem Zool. doi: 10.1086/680688 PubMedGoogle Scholar
  85. Pérez-Rodríguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays 31:1116–1126PubMedCrossRefGoogle Scholar
  86. Pérez-Rodríguez L, Mougeot F, Alonso-Alvarez C, Blas J, Viñuela J, Bortolotti GR (2008) Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J Exp Biol 211:2155–2161PubMedCrossRefGoogle Scholar
  87. Potti J (2007) Variation in the hematocrit of a passerine bird across life stages is mainly of environmental origin. J Avian Biol 38:726–730CrossRefGoogle Scholar
  88. Potti J, Moreno J, Merino S, Frías O, Rodríguez R (1999) Environmental and genetic variation in the haematocrit of fledgling pied flycatchers Ficedula hypoleuca. Oecologia 120:1–8CrossRefGoogle Scholar
  89. Potti J, Dávila JA, Tella JL, Frias O, Villar S (2002) Gender and viability selection on morphology in fledgling pied flycatchers. Mol Ecol 11:1317–1326PubMedCrossRefGoogle Scholar
  90. Proctor H, Owens I (2000) Mites and birds: diversity, parasitism and coevolution. Trends Ecol Evol 15:358–364PubMedCrossRefGoogle Scholar
  91. Rakhshandehroo E, Razavi SM, Nazifi S, Farzaneh M, Mobarraei N (2013) Dynamics of the enzymatic antioxidants during experimental caprine coccidiosis. Parasitol Res 112:1437–1441PubMedCrossRefGoogle Scholar
  92. Rendell WB, Verbeek NAM (1996) Are avian ectoparasites more numerous in nest boxes with old nest material? Can J Zool 74:1819–1825CrossRefGoogle Scholar
  93. Richner H, Tripet F (1999) Ectoparasitism and the trade-off between current and future reproduction. Oikos 86:535–538CrossRefGoogle Scholar
  94. Richner H, Oppliger A, Christe P (1993) Effect of an ectoparasite on reproduction in great tits. J Anim Ecol 62:703–710CrossRefGoogle Scholar
  95. Romero-Haro AA, Alonso-Alvarez C (2014) Covariation in oxidative stress markers in the blood of nestling and adult birds. Physiol Biochem Zool 87:353–362PubMedCrossRefGoogle Scholar
  96. Saino N, Bertacche V, Ferrari RP, Martinelli R, Møller AP, Stradi R (2002) Carotenoid concentration in barn swallow eggs is influenced by laying order, maternal infection and paternal ornamentation. Proc R Soc Lond B Biol Sci 269:1729–1733CrossRefGoogle Scholar
  97. Saino N, Caprioli M, Romano M, Boncoraglio G, Rubolini D, Ambrosini R, Bonisoli-Alquati A, Romano A (2011) Antioxidant defenses predict long-term survival in a passerine bird. PLoS One 6:e19593PubMedCentralPubMedCrossRefGoogle Scholar
  98. Sanz JJ, Moreno J (1995) Mass loss in brooding female pied flycatchers Ficedula hypoleuca: no evidence for reproductive stress. J Avian Biol 26:313–320CrossRefGoogle Scholar
  99. Schwilch R, Jenni L, Jenni-Eiermann S (1996) Metabolic responses of homing pigeons to flight and subsequent recovery. J Comp Physiol B 166:77–87CrossRefGoogle Scholar
  100. Sepp T, Karu U, Blount JD, Sild E, Männiste M, Hõrak P (2012) Coccidian infection causes oxidative damage in greenfinches. PLoS One 7:e36495PubMedCentralPubMedCrossRefGoogle Scholar
  101. Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62:1315S–1321SPubMedGoogle Scholar
  102. Simon A, Thomas D, Blondel J, Perret P, Lambrechts MM (2004) Physiological ecology of Mediterranean blue tits (Parus caeruleus L.): effects of ectoparasites (Protocalliphora spp.) and food abundance on metabolic capacity of nestlings. Physiol Biochem Zool 77:492–501PubMedCrossRefGoogle Scholar
  103. Sorci G, Faivre B (2009) Inflammation and oxidative stress in vertebrate host-parasite systems. Philos Trans R Soc Lond B Biol Sci 364:71–83PubMedCentralPubMedCrossRefGoogle Scholar
  104. Tomás G, Merino S, Moreno J, Morales J (2007) Consequences of nest reuse for parasite burden and female health and condition in blue tits, Cyanistes caeruleus. Anim Behav 73:805–814CrossRefGoogle Scholar
  105. Tomás G, Merino S, Martínez-de la Puente J, Moreno J, Morales J, Lobato E (2008) Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia 156:305–312PubMedCrossRefGoogle Scholar
  106. Tomás G, Merino S, Martínez-de la Puente J, Moreno J, Morales J, Lobato E, Rivero-de Aguilar J, del Cerro S (2012) Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behav Process 90:246–253CrossRefGoogle Scholar
  107. van de Crommenacker J, Richardson DS, Koltz AM, Hutchings K, Komdeur J (2012) Parasitic infection and oxidative status are associated and vary with breeding activity in the Seychelles warbler. Proc R Soc Lond B Biol Sci 279:1466–1476CrossRefGoogle Scholar
  108. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B Biol Sci 266:1–12CrossRefGoogle Scholar
  109. Wegmann M, Boegeli B, Richner H (2015) Physiological responses to increased brood size and ectoparasite infestation: Adult great tits favour self-maintenance. Physiol Behav 141:127–134PubMedCrossRefGoogle Scholar
  110. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492PubMedGoogle Scholar
  111. Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dpto. Ecología EvolutivaMuseo Nacional de Ciencias Naturales—CSICMadridSpain
  2. 2.Dpto. Ecología EvolutivaEstación Biológica de Doñana—CSICSevilleSpain

Personalised recommendations