, Volume 179, Issue 1, pp 209–222 | Cite as

Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments

  • Verena Rösch
  • Teja Tscharntke
  • Christoph Scherber
  • Péter Batáry
Community ecology - Original research


Agricultural intensification has been shown to reduce biodiversity through processes such as habitat degradation and fragmentation. We tested whether several small or single large habitat fragments (re-visiting the ‘single large or several small’ debate) support more species across a wide range of taxonomic groups (plants, leafhoppers, true bugs, snails). Our study comprised 14 small (<1 ha) and 14 large (1.5–8 ha) fragments of calcareous grassland in Central Germany along orthogonal gradients of landscape complexity and habitat connectivity. Each taxon was sampled on six plots per fragment. Across taxa, species richness did not differ between large and small fragments, whereas species-area accumulation curves showed that both overall and specialist species richness was much higher on several small fragments of calcareous grassland than on few large fragments. On average, 85 % of the overall species richness was recorded on all small fragments taken together (4.6 ha), whereas the two largest ones (15.1 ha) only accounted for 37 % of the species. This could be due to the greater geographic extent covered by many small fragments. However, community composition differed strongly between large and small fragments, and some of the rarest specialist species appeared to be confined to large fragments. The surrounding landscape did not show any consistent effects on species richness and community composition. Our results show that both single large and many small fragments are needed to promote landscape-wide biodiversity across taxa. We therefore question the focus on large fragments only and call for a new diversified habitat fragmentation strategy for biodiversity conservation.


Calcareous grasslands Community composition Habitat fragmentation Invertebrates Isolation 



We would like to thank Andrea Rösch, Boris M. Hillmann, Éva M. Szegő and Felix Weiß for their help with data collection in the field. Furthermore, we would like to thank Sebastian Schuch who gave an introduction to leafhopper identification to V. R., Walter Wimmer and Ira Richling who both helped with snail identification and Laura Sutcliffe who helped to improve the English and gave valuable comments on earlier versions of the manuscript. We thank Adam C. Smith and anonymous referees for their valuable comments. P. B. was supported by the German Research Foundation (DFG BA4438/1-1). Support to V. R. by the MWK graduate school (Biodiversität und Gesellschaft) and support to T.T. and C.S. by the DFG Research Training Group 1644 (Scaling Problems in Statistics) is acknowledged.

Supplementary material

442_2015_3315_MOESM1_ESM.pdf (786 kb)
Supplementary material 1 (PDF 785 kb)
442_2015_3315_MOESM2_ESM.pdf (559 kb)
Supplementary material 2 (PDF 559 kb)


  1. Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79:517–533. doi: 10.2307/176950 CrossRefGoogle Scholar
  2. Biedermann R, Niedringhaus R (2004) Die Zikaden Deutschlands–Bestimmungstafeln für alle Arten. Fründ, ScheeßelGoogle Scholar
  3. Boschi C, Baur B (2007) Effects of management intensity on land snails in Swiss nutrient-poor pastures. Agric Ecosyst Environ 120:243–249. doi: 10.1016/j.agee.2006.09.008 CrossRefGoogle Scholar
  4. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809. doi: 10.1111/j.1365-2664.2010.01828.x CrossRefGoogle Scholar
  5. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Permanent URL:
  6. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, de Blust G, DeFilippi R, Frenzel M, Hendrickx F, Herzog F, Klotz S, Liira J, Maelfait J-P, Schmidt T, Speelmans M, van Wingerden WKRE, Zobel M (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob Ecol Biogeogr 16:774–787. doi: 10.1111/j.1466-8238.2007.00344.x CrossRefGoogle Scholar
  7. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, StuttgartGoogle Scholar
  8. Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc Ecol 26:865–876. doi: 10.1007/s10980-011-9614-2 CrossRefGoogle Scholar
  9. Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS (2012) A meta-analysis on the impact of different matrix structures on species movement rates. Landsc Ecol 27:1263–1278. doi: 10.1007/s10980-012-9781-9 CrossRefGoogle Scholar
  10. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  11. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. doi: 10.1111/jbi.12130 CrossRefGoogle Scholar
  12. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. doi: 10.1111/j.1466-8238.2006.00287.x CrossRefGoogle Scholar
  13. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  14. Fukamachi K, Iida S, Nakashizuka T (1996) Landscape patterns and plant species diversity of forest reserves in the Kanto region, Japan. Vegetation 124:107–114. doi: 10.1007/BF00045149 CrossRefGoogle Scholar
  15. Garve E (2004) Rote Liste und Florenliste der Farn- und Blütenpflanzen in Niedersachsen und Bremen-5. Fassung, Stand 1.3. 2004. Informationsd Naturschutz Niedersachsen 1:1–76Google Scholar
  16. Godefroid S, Koedam N (2003) How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Glob Ecol Biogeogr 12:287–298. doi: 10.1046/j.1466-822X.2003.00035.x CrossRefGoogle Scholar
  17. Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity. Oxford University Press, New York, pp 39–53Google Scholar
  18. Götmark F, Von Proschwitz T, Franc N (2008) Are small sedentary species affected by habitat fragmentation? Local vs. landscape factors predicting species richness and composition of land molluscs in Swedish conservation forests. J Biogeogr 35:1062–1076. doi: 10.1111/j.1365-2699.2008.01882.x CrossRefGoogle Scholar
  19. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596. doi: 10.1007/s00442-007-0752-9 CrossRefPubMedGoogle Scholar
  20. Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251. doi:10.1890/0012-9658(2000)081[0239:ETPOSA]2.0.CO;2CrossRefGoogle Scholar
  21. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. doi: 10.1111/j.1461-0248.2005.00841.x PubMedGoogle Scholar
  22. Hylander K, Ehrlén J (2013) The mechanisms causing extinction debts. Trends Ecol Evol 28:341–346. doi: 10.1016/j.tree.2013.01.010 CrossRefPubMedGoogle Scholar
  23. Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzger GA, Olandese ML, Pepe D, Silvers GA, Suresch HN, Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007) Does size matter for dispersal distance? Glob Ecol Biogeogr 16:415–425. doi: 10.1111/j.1466-8238.2007.00312.x CrossRefGoogle Scholar
  24. Kerney MP, Cameron RAD, Jungbluth JH (1983) Die Landschnecken Nord- und Mitteleuropas. Parey, Hamburg, BerlinGoogle Scholar
  25. Koordinationsstelle Biodiversitäts-Monitoring Schweiz (2010) Anleitung für die Feldarbeit zum Indikator «Z9-Mollusken» , Bundesamt für Umwelt, Bern.
  26. Kőrösi Á, Batáry P, Orosz A, Rédei D, Báldi A (2012) Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conserv Divers 5:57–66. doi: 10.1111/j.1752-4598.2011.00153.x CrossRefGoogle Scholar
  27. Kormann U, Rösch V, Batáry P, Tscharntke T, Orci KM, Samu F, Scherber C (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib. doi: 10.1111/ddi.12324
  28. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900. doi: 10.1046/j.1365-2699.2003.00878.x CrossRefGoogle Scholar
  29. Lasky JR, Keitt TH (2013) Reserve size and fragmentation alter community assembly, diversity, and dynamics. Am Nat 182:E142–E160. doi: 10.1086/673205 CrossRefPubMedGoogle Scholar
  30. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi: 10.1007/s004420100716 CrossRefGoogle Scholar
  31. Littlewood NA, Pakeman RJ, Woodin SJ (2007) Isolation of habitat patches limits colonisation by moorland Hemiptera. J Insect Conserv 13:29–36. doi: 10.1007/s10841-007-9114-5 CrossRefGoogle Scholar
  32. Losos JB, Ricklefs RE (2010) The theory of island biogeography revisited. Princeton University Press, PrincetonGoogle Scholar
  33. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  34. Maiorano L, Falcucci A, Boitani L (2008) Size-dependent resistance of protected areas to land-use change. Proc R Soc Biol Sci 275:1297–1304. doi: 10.1098/rspb.2007.1756 CrossRefGoogle Scholar
  35. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  36. Marini L, Öckinger E, Battisti A, Bommarco R (2012) High mobility reduces beta-diversity among orthopteran communities–implications for conservation. Insect Conserv Divers 5:37–45. doi: 10.1111/j.1752-4598.2011.00152.x CrossRefGoogle Scholar
  37. Mattern H, Mauk J, Kübler R (1992) Die Entwicklung der Heiden im Regierungsbezirk Stuttgart während des letzten Jahrzehnts (1980/1990). Veröffentlich Naturschutz Landschaftspfl Baden-Württemb 67:127–135Google Scholar
  38. Melber A (1999) Rote Liste der in Niedersachsen und Bremen gefährdeten Wanzen mit Gesamtartenverzeichnis, 1. Fassung, Stand 31.12.1998. Informationsd Naturschutz Niedersachsen 5:1–44Google Scholar
  39. Naimi B (2014) usdm: Uncertainty analysis for species distribution models, R package version 1.1-12,,
  40. Nickel H (2003) The leafhoppers and planthoppers of Germany (Hemiptera, Auchenorrhyncha): patterns and strategies in a highly diverse group of phytophagous insects. Pensoft, Goecke and Evers, Sofia, Moscow, KelternGoogle Scholar
  41. Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography (Cop) 35:259–267. doi: 10.1111/j.1600-0587.2011.06870.x CrossRefGoogle Scholar
  42. Oksanen J, Blanchet FG, Kindt R, Minchin PR, Hara RBO, Simpson GL, Sólymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-9,
  43. Ovaskainen O (2002) Long-term persistence of species and the SLOSS problem. J Theor Biol 218:419–433. doi: 10.1006/yjtbi.3089 CrossRefPubMedGoogle Scholar
  44. Pinheiro J, Bates D, DebRoy S, Sarkar D, R-Core-Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-116,
  45. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376. doi: 10.1016/S0006-3207(01)00201-4 CrossRefGoogle Scholar
  46. Poschlod P, Kiefer S, Tränkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–91. doi: 10.2307/1479087 CrossRefGoogle Scholar
  47. Qian H, Shimono A (2012) Effects of geographic distance and climatic dissimilarity on species turnover in alpine meadow communities across a broad spatial extent on the Tibetan Plateau. Plant Ecol 213:1357–1364. doi: 10.1007/s11258-012-0095-4 CrossRefGoogle Scholar
  48. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  49. Remane R, Achtziger R, Fröhlich W, Nickel H, Witsack W (1997) Rote Liste der Zikaden in der Bundesrepublik Deutschland (Homoptera, Auchenorrhyncha). Cicadina 1:243–249Google Scholar
  50. Rösch V, Tscharntke T, Scherber C, Batáry P (2013) Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J Appl Ecol 50:387–394. doi: 10.1111/1365-2664.12056 CrossRefGoogle Scholar
  51. Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze E-D, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I et al., (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556. doi: 10.1038/nature09492 CrossRefPubMedGoogle Scholar
  52. Scherber C, Lavandero B, Meyer K, Perovic D, Visser U, Wiegand K, Tscharntke T (2012) Scale effects in biodiversity and biological control: methods and statistical analysis. In: Gurr GM, Wratten SD, Snyder WE, Read DMY (eds) Biodiversity and insect pests: key issues for sustainable management. Wiley, Chichester, pp 123–138Google Scholar
  53. Schüepp C, Herrmann JD, Herzog F, Schmidt-Entling MH (2011) Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia 165:713–721. doi: 10.1007/s00442-010-1746-6 CrossRefPubMedGoogle Scholar
  54. Seybold S (2009) Schmeil-Fitschen: Flora von Deutschland und angrenzender Länder. Quelle andMeyer, Heidelberg, WiesbadenGoogle Scholar
  55. Simberloff D (1988) The contribution of population and community biology to conservation science. Annu Rev Ecol Syst 19:473–511CrossRefGoogle Scholar
  56. Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc Ecol 24:1271–1285. doi: 10.1007/s10980-009-9383-3 CrossRefGoogle Scholar
  57. Stoll P, Oggier P, Baur B (2009) Population dynamics of six land snail species in experimentally fragmented grassland. J Anim Ecol 78:236–246. doi: 10.1111/j.1365-2656.2008.01478.x CrossRefPubMedGoogle Scholar
  58. Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a seasure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173. doi: 10.1111/j.1523-1739.2004.00337.x CrossRefGoogle Scholar
  59. Teichler K-H, Wimmer W (2007) Liste der Binnenmollusken Niedersachsens,
  60. Tjørve E (2010) How to resolve the SLOSS debate: lessons from species-diversity models. J Theor Biol 264:604–612. doi: 10.1016/j.jtbi.2010.02.009 CrossRefPubMedGoogle Scholar
  61. Tjørve E, Tjørve KMC (2008) The species-area relationship, self-similarity, and the true meaning of the z value. Ecology 89:3528–3533. doi: 10.1890/07-1685.1 CrossRefPubMedGoogle Scholar
  62. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363. doi:10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2Google Scholar
  63. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W et al., (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685. doi: 10.1111/j.1469-185X.2011.00216.x CrossRefPubMedGoogle Scholar
  64. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  65. Wachmann E, Melber A, Deckert J (2004) Wanzen 2-Tierw Deutschlds 75:1–294Google Scholar
  66. Wachmann E, Melber A, Deckert J (2006) Wanzen 1-Tierw Deutschlds 77:1–263Google Scholar
  67. Wachmann E, Melber A, Deckert J (2007) Wanzen 3-Tierw Deutschlds 78:1–272Google Scholar
  68. Wachmann E, Melber A, Deckert J (2008) Wanzen 4-Tierw Deutschlds 81:1–230Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Verena Rösch
    • 1
  • Teja Tscharntke
    • 1
  • Christoph Scherber
    • 1
  • Péter Batáry
    • 1
  1. 1.AgroecologyGeorg-August-UniversitätGöttingenGermany

Personalised recommendations