Advertisement

Oecologia

, Volume 178, Issue 4, pp 967–979 | Cite as

Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird

  • Nicole D. Kowalczyk
  • Richard D. Reina
  • Tiana J. Preston
  • André Chiaradia
HIGHLIGHTED STUDENT RESEARCH

Abstract

Marine animals forage in areas that aggregate prey to maximize their energy intake. However, these foraging ‘hot spots’ experience environmental variability, which can substantially alter prey availability. To survive and reproduce animals need to modify their foraging in response to these prey shifts. By monitoring their inter-annual foraging behaviours, we can understand which environmental variables affect their foraging efficiency, and can assess how they respond to environmental variability. Here, we monitored the foraging behaviour and isotopic niche of little penguins (Eudyptula minor), over 3 years (2008, 2011, and 2012) of climatic and prey variability within Port Phillip Bay, Australia. During drought (2008), penguins foraged in close proximity to the Yarra River outlet on a predominantly anchovy-based diet. In periods of heavy rainfall, when water depth in the largest tributary into the bay (Yarra River) was high, the total distance travelled, maximum distance travelled, distance to core-range, and size of core- and home-ranges of penguins increased significantly. This larger foraging range was associated with broad dietary diversity and high reproductive success. These results suggest the increased foraging range and dietary diversity of penguins were a means to maximize resource acquisition rather than a strategy to overcome local depletions in prey. Our results demonstrate the significance of the Yarra River in structuring predator–prey interactions in this enclosed bay, as well as the flexible foraging strategies of penguins in response to environmental variability. This plasticity is central to the survival of this small-ranging, resident seabird species.

Keywords

River plumes GPS Salinity Penguin Stable isotopes 

Notes

Acknowledgments

Parks Victoria granted permission to work along the breakwater. We thank Holsworth Wildlife Research Trust, Penguin Foundation, and Coastcare Australia for financial support. We acknowledge Earthcare St Kilda and Phillip Island Nature Parks for their in-kind support. We thank the Environment Protection Agency and Melbourne Water for environmental data. We thank all research volunteers especially Lisa Mandeltort for their tireless efforts in the field and to Christopher Johnstone and Bronwyn Isaac who provided statistical and mapping advice, respectively. Research was conducted under scientific permits issued by the Victorian Department of Sustainability and the Environment (10003848, 10005601), and approved by the Animal Ethics Committee of Monash University (BSCI/2010/22, BSCI/2011/33).

References

  1. Arnould JPY, Dann P, Cullen JM (2004) Determining the sex of Little Penguins (Eudyptula minor) in northern Bass Strait using morphometric measurements. Emu 104:261–265. doi: 10.1071/MU04035 CrossRefGoogle Scholar
  2. Bakun A (2014) Active opportunist species as potential diagnostic markers for comparative tracking of complex marine ecosystem responses to global trends. ICES J Mar Sci. doi.: 10.1093/icesjms/fst242
  3. Ballance LT, Pitman RL, Fiedler PC (2006) Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: a review. Prog Oceanogr 69:360–390. doi: 10.1016/j.pocean.2006.1003.1013 CrossRefGoogle Scholar
  4. Ballard G, Dugger K, Nur N, Ainley D (2010) Foraging strategies of Adélie penguins: adjusting body condition to cope with environmental variability. Mar Ecol Prog Ser 405:287–302. doi: 10.3354/meps08514 CrossRefGoogle Scholar
  5. Barrett RT, Erikstad KE (2013) Environmental variability and fledging body mass of common guillemot Uria aalge chicks. Mar Biol 160:1239–1248. doi: 10.1007/s00227-00013-02175-y CrossRefGoogle Scholar
  6. Bearhop S, Teece MA, Waldron S, Furness RW (2000) Influence of lipid and uric acid on δ13C and δ15N values of avian blood: implications for trophic studies. Auk 117:504–507. doi:10.1642/0004-8038(2000)1117[0504:iolaua]1642.1640.co;1642Google Scholar
  7. Bearhop S, Phillips R, McGill R, Cherel Y, Dawson D, Croxall J (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164. doi: 10.3354/meps311157 CrossRefGoogle Scholar
  8. Brooke M (2004) The food consumption of the world’s seabirds. Proc R Soc Lond B 271:S246–S248. doi: 10.1098/rsbl.2003.0153 CrossRefGoogle Scholar
  9. Bugoni L, McGill RAR, Furness RW (2008) Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Commun Mass Spectrom 22:2457–2462. doi: 10.1002/rcm.3633 PubMedCrossRefGoogle Scholar
  10. Burrows MT et al (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–495. doi: 10.1038/nature12976 PubMedCrossRefGoogle Scholar
  11. Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi: 10.1016/j.ecolmodel.2006.1003.1017 CrossRefGoogle Scholar
  12. Ceia F et al (2014) Annual and seasonal consistency in the feeding ecology of an opportunistic species, the yellow-legged gull Larus michahellis. Mar Ecol Prog Ser 497:273–284. doi: 10.3354/meps10586 CrossRefGoogle Scholar
  13. Certain G, Bellier E, Planque B, Bretagnolle V (2007) Characterising the temporal variability of the spatial distribution of animals: an application to seabirds at sea. Ecography 30:695–708. doi: 10.1111/j.2007.0906-7590.05197.x CrossRefGoogle Scholar
  14. Chiaradia A, Kerry K (1999) Daily nest attendance and breeding performance in the little penguin Eudyptula minor at Phillip Island, Australia. Mar Ornithol 27:13–20Google Scholar
  15. Chiaradia A, Nisbet ICT (2006) Plasticity in parental provisioning and chick growth in little penguins Eudyptula minor in years of high and low breeding success. Ardea 94:257–270Google Scholar
  16. Chiaradia A, Costalunga A, Kerry K (2003) The diet of little penguins (Eudyptula minor) at Phillip Island, Victoria, in the absence of a major prey—Pilchard (Sardinops sagax). Emu 103:43–48. doi: 10.1071/MU02020 CrossRefGoogle Scholar
  17. Chiaradia A, Forero MG, Hobson KA, Cullen JM (2010) Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey. ICES J Mar Sci 67:1710–1720. doi: 10.1093/icesjms/fsq1067 CrossRefGoogle Scholar
  18. Chiaradia A et al (2012) Diet segregation between two colonies of little penguins Eudyptula minor in southeast Australia. Austral Ecol 37:610–619. doi: 10.1111/j.1442-9993.2011.02323.x CrossRefGoogle Scholar
  19. Collins M, Cullen JM, Dann P (1999) Seasonal and annual foraging movements of little penguins from Phillip Island, Victoria. Wildl Res 26:705–721. doi: 10.1071/WR98003 CrossRefGoogle Scholar
  20. Dann P (1988) An experimental manipulation of clutch size in the little penguin Eudyptula minor. Emu 88:101–103CrossRefGoogle Scholar
  21. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884. doi: 10.1038/nature02808 PubMedCrossRefGoogle Scholar
  22. Elliott KH, Woo KJ, Gaston AJ, Benvenuti S, Dall’Antonia L, Davoren GK (2009) Central-place foraging in an arctic seabird provides evidence for Storer-Ashmole’s Halo. Auk 126:613–625. doi: 10.1525/auk.2009.08245 CrossRefGoogle Scholar
  23. Environmental Protection Agency Victoria (2012) Baywide water quality monitoring program. Milestone report number 9 Environment Protection Agency, Victoria. pp 1–107Google Scholar
  24. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  25. Gales R, Green B (1990) The annual energetics cycle of little penguins (Eudyptula Minor). Ecology 71:2297–2312CrossRefGoogle Scholar
  26. Gaston AJ, Ydenberg RC, Smith GJ (2007) Ashmole’s halo and population regulation in seabirds. Mar Ornithol 35:119–126Google Scholar
  27. Gillson J, Suthers I, Scandol J (2012) Effects of flood and drought events on multi-species, multi-method estuarine and coastal fisheries in eastern Australia. Fish Manag Ecol 19:54–68. doi: 10.1111/j.1365-2400.2011.00816.x CrossRefGoogle Scholar
  28. Grimes CB, Finucane JH (1991) Spatial distribution and abundance of larval and juvenile fish, chlorophyll and macrozooplankton around the Mississippi River discharge plume, and the role of the plume in fish recruitment. Mar Ecol Prog Ser 75:109–119CrossRefGoogle Scholar
  29. Grimes C, Kingsford M (1996) How do riverine plumes of different sizes influence fish larvae: do they enhance recruitment? Mar Freshw Res 47:191–208. doi: 10.1071/MF9960191 CrossRefGoogle Scholar
  30. Harley C et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi: 10.1111/j.1461-0248.2005.00871.x PubMedCrossRefGoogle Scholar
  31. Hirst AJ, White CA, Green C, Werner GF, Heislers S, Spooner D (2011) Baywide anchovy study sub-program. Milestone report No. 4 Technical report No. 150. Department of Primary Industries, Queenscliff,Victoria, AustraliaGoogle Scholar
  32. Hobson KA, Clark R (1993) Turnover of 13 C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 11:638–641CrossRefGoogle Scholar
  33. Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798CrossRefGoogle Scholar
  34. Hobson KA, Gloutney ML, Gibbs HL (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:1720–1723CrossRefGoogle Scholar
  35. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–674. doi: 10.1198/106186006x106133933 CrossRefGoogle Scholar
  36. Hothorn T, Hornik K, Zeileis A (2011) party: A laboratory for recursive part (y) itioning. http://cran.r-project.org/package=party
  37. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. doi: 10.1111/j.1365-2656.2011.01806.x PubMedCrossRefGoogle Scholar
  38. Jaeger A, Connan M, Richard P, Cherel Y (2010) Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar Ecol Prog Ser 401:269–277. doi: 10.3354/meps08380 CrossRefGoogle Scholar
  39. Jodice P et al (2006) Increased energy expenditure by a seabird in response to higher food abundance. Mar Ecol Prog Ser 306:283–293. doi: 10.3354/meps306283 CrossRefGoogle Scholar
  40. Johnstone CP, Lill A, Reina RD (2014) Habitat loss, fragmentation and degradation effects on small mammals: analysis with conditional inference tree statistical modelling. Biol Conserv 176:80–98. doi: 10.1016/j.biocon.2014.1004.1025 CrossRefGoogle Scholar
  41. Kingsford MJ, Suthers IM (1994) Dynamic estuarine plumes and fronts: importance to small fish and plankton in coastal waters of NSW, Australia. Cont Shelf Res 14:655–672. doi: 10.1016/0278-4343(1094)90111-90112 CrossRefGoogle Scholar
  42. Kotzerka J, Hatch SA, Garthe S (2011) Evidence for foraging-site fidelity and individual foraging behaviour of Pelagic Cormorants rearing chicks in the Gulf of Alaska. Condor 113:80–88. doi: 10.1525/cond.2011.090158 CrossRefGoogle Scholar
  43. Kowalczyk ND, Chiaradia A, Preston TJ, Reina RD (2013) Linking dietary shifts and reproductive failure in seabirds: a stable isotope approach. Funct Ecol 28:755–765. doi: 10.1111/1365-2435.12216 CrossRefGoogle Scholar
  44. Kowalczyk ND, Chiaradia A, Preston TJ, Reina RD (2015) Fine-scale dietary changes between the breeding and non-breeding diet of a resident seabird. R Soc Open Sci. doi: 10.1098/rsos.140291 PubMedCentralPubMedGoogle Scholar
  45. Kudela RM et al (2010) Multiple trophic levels fueled by recirculation in the Columbia River plume. Geophys Res Lett 37:L18607. doi: 10.11029/12010gl044342 CrossRefGoogle Scholar
  46. Le Fèvre J (1987) Aspects of the biology of frontal systems. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology, vol 23. Academic, New York, pp 163–299Google Scholar
  47. Lee R, Black K, Bosserel C, Greer D (2012) Present and future prolonged drought impacts on a large temperate embayment: Port Phillip Bay, Australia. Ocean Dyn 62:907–922. doi: 10.1007/s10236-10012-10538-10234 CrossRefGoogle Scholar
  48. Levins R (1968) Evolution in changing environments. Princeton University, PrincetonGoogle Scholar
  49. Litz MNC, Emmett RL, Bentley PJ, Claiborne AM, Barceló C (2014) Biotic and abiotic factors influencing forage fish and pelagic nekton community in the Columbia River plume (USA) throughout the upwelling season 1999–2009. ICES J Mar Sci 71:5–18. doi: 10.1093/icesjms/fst1082 CrossRefGoogle Scholar
  50. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609CrossRefGoogle Scholar
  51. Martínez del Rio C, Sabat P, Anderson-Sprecher R, Gonzalez S (2009) Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia 161:149–159. doi: 10.1007/s00442-00009-01357-00442 CrossRefGoogle Scholar
  52. Mattern T, Ellenberg U, Houston D, Davis L (2007) Consistent foraging routes and benthic foraging behaviour in yellow-eyed penguins. Mar Ecol Prog Ser 343:295–306. doi: 10.3354/meps06954 CrossRefGoogle Scholar
  53. Mattern T et al (2013) Straight line foraging in yellow-eyed penguins: new insights into cascading fisheries effects and orientation capabilities of marine predators. PLoS ONE 8:e84381. doi: 10.81371/journal.pone.0084381 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Morales JM et al (2010) Building the bridge between animal movement and population dynamics. Philos Trans R Soc Lond B 365:2289–2301. doi: 10.1098/rstb.2010.0082 CrossRefGoogle Scholar
  55. Murray BG (2000) Measuring annual reproductive success in birds. The Condor 102:470–473. doi:10.1650/0010-5422(2000)1102[0470:marsib]1652.1650.co;1652CrossRefGoogle Scholar
  56. Parnell A, Inger R, Bearhop S, Jackson A (2008) SIAR: stable isotope analysis in R. cran. r-project. org/web/packages/siar/Google Scholar
  57. Parry G, Stokie T (2008) Baywide anchovy study sub-program: Milestone report No.1 Technical Report No. 23. Department of Primary Industries, Australia, pp 1–28Google Scholar
  58. Pelletier L, Chiaradia A, Kato A, Ropert-Coudert Y (2014) Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin. Oecologia 176:399–408. doi: 10.1007/s00442-00014-03018-00443 PubMedCrossRefGoogle Scholar
  59. Pettex E et al (2012) Multi-scale foraging variability in Northern gannet (Morus bassanus) fuels potential foraging plasticity. Mar Biol 159:2743–2756. doi: 10.1007/s00227-00012-02035-00221 Google Scholar
  60. Pinaud D, Cherel Y, Weimerskirch H (2005) Effect of environmental variability on habitat selection, diet, provisioning behaviour and chick growth in yellow-nosed albatrosses. Mar Ecol Prog Ser 298:295–304. doi: 10.3354/meps298295 CrossRefGoogle Scholar
  61. Preston T (2010) Relationships between foraging behaviour, diet and reproductive success at an urban colony of little penguins (Eudyptula minor), St Kilda. Australia School of Biological Sciences. Monash UniversityGoogle Scholar
  62. Preston T et al (2008) Foraging behaviour of little penguins Eudyptula minor in an artificially modified environment. Endanger Species Res 4:95–103. doi: 10.3354/esr00069 CrossRefGoogle Scholar
  63. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154CrossRefGoogle Scholar
  64. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. R Development Core Team (2009) R: a language and environment for statistical computing, Vienna, Austria. http://www.R-project.org
  66. Richards W, Leming T, McGowan M, Lamkin J, Kelley-Fraga S (1989) Distribution of fish larvae in relation to hydrographic features of the Loop Current boundary in the Gulf of Mexico. Rapp P-V Reunions Cons Int Explor Mer 191:169–176Google Scholar
  67. Rindorf A, Wanless S, Harris M (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Mar Ecol Prog Ser 202:241–252CrossRefGoogle Scholar
  68. Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830. doi: 10.1093/beheco/arh1086 CrossRefGoogle Scholar
  69. Ropert-Coudert Y, Kato A, Wilson R, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar Biol 149:139–148. doi: 10.1007/s00227-00005-00188-x CrossRefGoogle Scholar
  70. Ropert-Coudert Y, Knott N, Chiaradia A, Kato A (2007) How do different data logger sizes and attachment positions affect the diving behaviour of little penguins? Deep-sea Res II 54:415–423. doi: 10.1016/j.dsr1012.2006.1011.1018 CrossRefGoogle Scholar
  71. Sæther BE (2000) Weather ruins winter vacations. Science 288:1975–1976. doi: 10.1126/science.1288.5473.1975 PubMedCrossRefGoogle Scholar
  72. Salton M, Saraux C, Dann D, Chiaradia A (2015) Carry-over body mass effect from non-breeding to breeding in a resident seabird, the Little penguin. R Soc Open Sci 2:140–390. doi: 10.1098/rsos.140390 CrossRefGoogle Scholar
  73. Sidhu L, Catchpole E, Dann P (2007) Mark-recapture-recovery modeling and age-related survival in Little Penguins (Eudyptula minor). Auk 124:815–827. doi:10.1642/0004-8038(2007)1124[1815:MMAASI]1642.1640.CO;1642CrossRefGoogle Scholar
  74. Skov H, Prins E (2001) Impact of estuarine fronts on the dispersal of piscivorous birds in the German Bight. Mar Ecol Prog Ser 214:279–287. doi: 10.3354/meps214279 CrossRefGoogle Scholar
  75. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  76. Suryan RM, Irons DB, Benson J (2000) Prey switching and variable foraging strategies of black-legged kittiwakes and the effect on reproductive success. Condor 102:374–384CrossRefGoogle Scholar
  77. Tremblay Y, Thiebault A, Mullers R, Pistorius P (2014) Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS ONE 9:e88424. doi: 10.81371/journal.pone.0088424 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Voice M, Harvey N, Walsh K (2006) Vulnerability to climate change of Australia’s coastal zone: analysis of gaps in methods, data and system thresholds. Report to the Australian Greenhouse Office, AustraliaGoogle Scholar
  79. Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? deep sea research part II. Trop Stud Oceanogr 54:211–223. doi: 10.1016/j.dsr1012.2006.1011.1013 CrossRefGoogle Scholar
  80. Weimerskirch H et al (2003) Foraging efficiency and adjustment of energy expenditure in a pelagic seabird provisioning its chick. J Anim Ecol 72:500–508. doi: 10.1046/j.1365-2656.2002.00720.x CrossRefGoogle Scholar
  81. Weimerskirch H, Gault A, Cherel Y (2005) Prey distibution and patchiness: factors in foraging success and efficiency of wandering albatrosses. Ecology 86:2611–2622. doi: 10.1890/2604-1866 CrossRefGoogle Scholar
  82. Welcker J, Harding AMA, Kitaysky AS, Speakman JR, Gabrielsen GW (2009) Daily energy expenditure increases in response to low nutritional stress in an Arctic-breeding seabird with no effect on mortality. Funct Ecol 23:1081–1090. doi: 10.1111/j.1365-2435.2009.01585.x CrossRefGoogle Scholar
  83. Wilson RP (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl Soc Bull 25:101–106Google Scholar
  84. Zamon JE, Phillips EM, Guy TJ (2014) Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River. Deep Sea Res II 107:85–95. doi: 10.1016/j.dsr1012.2013.1003.1031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nicole D. Kowalczyk
    • 1
  • Richard D. Reina
    • 1
  • Tiana J. Preston
    • 1
  • André Chiaradia
    • 1
    • 2
  1. 1.School of Biological SciencesMonash UniversityClaytonAustralia
  2. 2.Research DepartmentPhillip Island Nature ParksCowesAustralia

Personalised recommendations