Oecologia

, Volume 178, Issue 3, pp 761–772 | Cite as

Integrating acoustic telemetry into mark–recapture models to improve the precision of apparent survival and abundance estimates

  • Christine L. Dudgeon
  • Kenneth H. Pollock
  • J. Matias Braccini
  • Jayson M. Semmens
  • Adam Barnett
Population ecology - Original research

Abstract

Capture–mark–recapture models are useful tools for estimating demographic parameters but often result in low precision when recapture rates are low. Low recapture rates are typical in many study systems including fishing-based studies. Incorporating auxiliary data into the models can improve precision and in some cases enable parameter estimation. Here, we present a novel application of acoustic telemetry for the estimation of apparent survival and abundance within capture–mark–recapture analysis using open population models. Our case study is based on simultaneously collecting longline fishing and acoustic telemetry data for a large mobile apex predator, the broadnose sevengill shark (Notorhynchus cepedianus), at a coastal site in Tasmania, Australia. Cormack–Jolly–Seber models showed that longline data alone had very low recapture rates while acoustic telemetry data for the same time period resulted in at least tenfold higher recapture rates. The apparent survival estimates were similar for the two datasets but the acoustic telemetry data showed much greater precision and enabled apparent survival parameter estimation for one dataset, which was inestimable using fishing data alone. Combined acoustic telemetry and longline data were incorporated into Jolly–Seber models using a Monte Carlo simulation approach. Abundance estimates were comparable to those with longline data only; however, the inclusion of acoustic telemetry data increased precision in the estimates. We conclude that acoustic telemetry is a useful tool for incorporating in capture–mark–recapture studies in the marine environment. Future studies should consider the application of acoustic telemetry within this framework when setting up the study design and sampling program.

Keywords

CJS JS POPAN Broadnose sevengill sharks Capture–recapture Population estimation 

Supplementary material

442_2015_3280_MOESM1_ESM.docx (97 kb)
Supplementary material 1 (DOCX 96 kb)

References

  1. Arnason AN, Schwarz CJ, Gerrard JM (1991) Estimating closed population size and number of marked animals from sighting data. J Wildl Manag 51:41–46Google Scholar
  2. Barnett A, Semmens JM (2012) Sequential movement into coastal habitats and high spatial overlap of predator and prey suggest high predation pressure in protected areas. Oikos 121:882–890. doi:10.1111/j.1600-0706.2011.20000.x CrossRefGoogle Scholar
  3. Barnett A, Abrantes K, Stevens JD, Yick JL, Frusher SD, Semmens JM (2010a) Predator-prey relationships and foraging ecology of a marine apex predator with a wide temperate distribution. Mar Ecol Progr Ser 416:189–200. doi:10.3354/meps08778 CrossRefGoogle Scholar
  4. Barnett A, Abrantes KG, Stevens JD, Bruce BD, Semmens JM (2010b) Fine-scale movements of the broadnose sevengill shark and its main prey, the gummy shark. PLoS ONE 5:e15464. doi:10.1371/journal.pone.0015464 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barnett A, Stevens JD, Frusher SD, Semmens JM (2010c) Seasonal occurrence and population structure of the broadnose sevengill shark Notorynchus cepedianus in coastal habitats of south-east Tasmania. J Fish Biol 77:1688–1701. doi:10.1111/j.1095-8649.2010.02810.x PubMedCrossRefGoogle Scholar
  6. Barnett A, Abrantes KG, Stevens JD, Semmens JM (2011) Site fidelity and sex-specific migration in a mobile apex predator: implications for conservation and ecosystem dynamics. Anim Behav 81:1039–1048. doi:10.1016/j.anbehav.2011.02.011 CrossRefGoogle Scholar
  7. Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547PubMedCrossRefGoogle Scholar
  8. Bird T, Lyon J, Nicol S, McCarthy M, Barker R (2014) Estimating population size in the presence of temporary migration using a joint analysis of telemetry and capture recapture data. Methods Ecol Evol. doi:10.1111/2041-210X.12202 Google Scholar
  9. Braccini JM (2008) Feeding ecology of two high-order predators from south-eastern Australia: the coastal broadnose and the deepwater sharpnose sevengill sharks. Mar Ecol Prog Ser 371:273–284CrossRefGoogle Scholar
  10. Burnham KP (1993) A theory for combined analysis of ring recovery and recapture data. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird populations. Birkhäuser, Basel, pp 199–231Google Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  12. Cochran WW, Lord RD Jr (1963) A radio-tracking system for wild animals. J Wildl Manag 27:9–24CrossRefGoogle Scholar
  13. Cooke SJ, Hinch SG, Wilkelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:335–343CrossRefGoogle Scholar
  14. Cooke SJ, Hogan ZS, Butcher PA, Stokesbury MJ, Hinch SG, Fisk AT, Smith P, VanderZwaag D, Whoriskey F (2012) Ocean Tracking Network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries 36:583–592CrossRefGoogle Scholar
  15. Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, Eiler J, Holbrook C, Ebner BC (2013) Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry 1:5. doi:10.1186/2050-3385-1-5 CrossRefGoogle Scholar
  16. Cormack R (1964) Estimates of survival from the sighting of marked animals. Biometrika 51:429–438CrossRefGoogle Scholar
  17. Cortés E (2004) Life history patterns, demography, and population dynamics. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of the sharks and their relatives. CRC, Boca RatonGoogle Scholar
  18. Dale JJ, Stankus AM, Burns MS, Meyer CG (2011) The shark assemblage at French Frigate Shoals Atoll, Hawai’i: species composition, abundance and habitat use. PLoS ONE 6:e16962PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dudgeon CL, Noad MJ, Lanyon JM (2008) Abundance and demography of a seasonal aggregation of zebra sharks Stegostoma fasciatum. Mar Ecol Progr Ser 368:269–281. doi:10.3354/meps07581 CrossRefGoogle Scholar
  20. Dupuis JA, Schwarz CJ (2007) A Bayesian approach to the multistate Jolly–Seber capture–recapture model. Biometrics 63:1015–1022PubMedCrossRefGoogle Scholar
  21. Eveson JP, Basson M, Hobday AJ (2012) Using electronic tag data to improve mortality and movement estimates in a tag-based spatial fisheries assessment model. Can J Fish Aquat Sci 69:869–883CrossRefGoogle Scholar
  22. Forcada J, Malone D, Royle JA, Staniland IJ (2009) Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries. Ecol Model 220:1513–1521CrossRefGoogle Scholar
  23. Gibson D, Blomberg EJ, Patricelli GL, Krakauer AH, Atamian MT, Sedinger JS (2013) Effects of radio collars on survival and lekking behaviour of male Greater Sage-Grouse. Condor 115:769–776CrossRefGoogle Scholar
  24. Gwinn DC, Brown P, Tetzlaff JC, Allen MS (2011) Evaluating mark-recapture sampling designs for fish in an open riverine system. Mar Freshw Res 62:835–840CrossRefGoogle Scholar
  25. Heupel MR, Simpfendorfer CA (2002) Estimation of mortality of juvenile blacktip sharks, Carcharhinus limbatus, within a nursery area using telemetry data. Can J Fish Aquat Sci 59:624–632. doi:10.1139/f02-036 CrossRefGoogle Scholar
  26. Hewitt DA, Janney EC, Hayes BS, Shively RS (2010) Improving inferences from fisheries capture–ecapture studies through remote detection of PIT tags. Fisheries 35:217–231. doi:10.1577/1548-8446-35.5.217 CrossRefGoogle Scholar
  27. Johnson HE, Scott Mills L, Wehausen JD, Stephenson TR (2010) Combining ground count, telemetry, and mark-resight data to infer population dynamics in an endangered species. J Appl Ecol 47:1083–1093. doi:10.1111/j.1365-2664.2010.01846.x CrossRefGoogle Scholar
  28. Jolly G (1965) Explicit estimates from capture–recapture data with both death and immigration-scholastic model. Biometrika 52:225–247PubMedCrossRefGoogle Scholar
  29. Kendall WL et al (1997) Estimating temporary emigration using capture–recapture data with Pollock’s robust design. Ecology 78:563–578Google Scholar
  30. Kendall WL et al (2013) Combining dead recovery, auxiliary observations and robust design data to estimate demographic parameters from marked individuals. Methods Ecol Evol 4:828–835. doi:10.1111/2041-210x.12077 CrossRefGoogle Scholar
  31. Kirkwood R et al (2010) Continued population recover by Australian fur seals. Mar Freshw Res 61:695–701CrossRefGoogle Scholar
  32. Knip DM, Heupel MR, Simpfendorfer CA (2012) Mortality rates for two shark species occupying a shared coastal environment. Fish Res 125–126:184–189. doi:10.1016/j.fishres.2012.02.023 CrossRefGoogle Scholar
  33. Laake J, Rexstad E (2008) RMark—an alternative to building linear models in MARK. In: Cooch E, White GC (eds) Program MARK: a gentle introduction, 9th edn. Colorado State University, Fort Collins, pp C1–C115. http://www.phidot.org/software/mark/docs/book. Accessed 27 May 2014
  34. Lee KA, Huveneers C, Gimenez O, Peddemors V, Harcourt RG (2014) To catch or to sight? A comparison of demographic parameter estimates obtained from mark-recapture and mark-resight models. Biodivers Conserv 23:2781–2800. doi:10.1007/s10531-014-0748-9 CrossRefGoogle Scholar
  35. McClintock BT, White GC (2009) A less field-intensive robust design for estimating demographic parameters with mark-resight data. Ecology 90:313–320PubMedCrossRefGoogle Scholar
  36. McClintock BT, White GC (2012) From NOREMARK to MARK: software for estimating demographic parameters with mark-resight methodology. J Ornithol 152:641–650CrossRefGoogle Scholar
  37. Neal AK, White GC, Gill RB, Reed DF, Olterman JH (1993) Evaluation of mark-resight model assumptions for estimating mountain sheep numbers. J Wildl Manag 57:436–450CrossRefGoogle Scholar
  38. Payne NL, Taylor MD, Watanabe YY, Semmens JM (2014) From physiology to physics: are we recognizing the flexibility of biologging tools? J Exp Biol 217:317–322. doi:10.1242/jeb.093922 PubMedCrossRefGoogle Scholar
  39. Pine WE, Pollock KH, Hightower JE, Kwak TJ, Rice JA (2003) A review of tagging methods for estimating fish population size and components of mortality. Fisheries 28:10–23. doi:10.1577/1548-8446(2003)28[10:arotmf]2.0.co;2CrossRefGoogle Scholar
  40. Pollock KH, Winterstein SR, Conroy MJ (1989) Estimation and analysis of survival distributions for radio-tagged animals. Biometrics 45:99–109CrossRefGoogle Scholar
  41. Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical interence for capture–recapture experiments. Wildl Monogr 107:1–97Google Scholar
  42. Pollock KH, Jiang HH, Hightower JE (2004) Combining telemetry and fisheries tagging models to estimate fishing and natural mortality rates. Trans Am Fish Soc 133:639–648CrossRefGoogle Scholar
  43. Poole D (2002) Bayesian estimation of survival from mark-recapture data. J Agric Biol Environ Stat 7:264–276CrossRefGoogle Scholar
  44. Powell LA, Conroy MJ, Hines JE, Nichols JD, Krementz DG (2000) Simultaneous use of mark-recapture and radiotelemetry to estimate survival, movement, and capture rates. J Wildl Manag 64:302–313CrossRefGoogle Scholar
  45. R Development Core Team (2011) R: a language and environment for statistical computing. R version 3.0.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed 16 May 2013
  46. Schaub M, Gimenez O, Sierro A, Arlettaz R (2007) Use of integrated modeling to enhance estimates of population dynamics obtained from limited data. Conserv Biol 21:945–955PubMedCrossRefGoogle Scholar
  47. Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52:860–873CrossRefGoogle Scholar
  48. Seber G (1965) A note on the multiple-recapture census. Biometrika 52:249–259PubMedCrossRefGoogle Scholar
  49. Sharples RJ, Mackenzie ML, Hammond PS (2009) Estimating seasonal abundance of a central place forager using counts and telemetry data. Mar Ecol Prog Ser 378:289–298CrossRefGoogle Scholar
  50. Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshw Res 49:663–678CrossRefGoogle Scholar
  51. Sollman R et al (2013) A spatial mark-resight model augmented with telmetry data. Ecology 94:553–559CrossRefGoogle Scholar
  52. Stehfest KM, Patterson TA, Barnett A (2014) Semmes JM (2014) Markov models and network analysis reveal sex-specific differences in the space-use of a coastal apex predator. Oikos 000:001–012. doi:10.1111/oik.01429 Google Scholar
  53. Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc Lond B 365:2163–2176. doi:10.1098/rstb.2010.0090 CrossRefGoogle Scholar
  54. Trolle M, Kéry M (2003) Estimation of ocelot density in the pantanal using capture–recapture analysis of camera trapping data. J Mammal 84(2):607–614CrossRefGoogle Scholar
  55. Trolliet F, Huynen MC, Vermeulen C, Hambuckers A (2014) Use of camera traps for wildlife studies. A review. Base [En ligne] 18:446–454. http://popups.ulg.ac.be/1780-4507/index.php?id=11542. Accessed 11 Jan 2015
  56. White GC, Burnham KP (1999) Program MARK: survival estimates from populations of marked animals. Bird Study 46(Suppl):120e–138eCrossRefGoogle Scholar
  57. White GC, Shenk TM (2001) Population esimation with radio-marked animals. In: Millspaugh J, Marzlufff JM (eds) Radio tracking and animal populations. Academic, San DiegoGoogle Scholar
  58. Whitlock RE, McAllister MK, Block BA (2012) Estimating fishing and natural mortality rates for Pacific bluefin tuna (Thunnus orientalis) using electronic tagging data. Fish Res 119–120:115–127. doi:10.1016/j.fishres.2011.12.015 CrossRefGoogle Scholar
  59. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations: modeling, estimation, and decision making. Academic, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christine L. Dudgeon
    • 1
  • Kenneth H. Pollock
    • 2
  • J. Matias Braccini
    • 3
  • Jayson M. Semmens
    • 4
  • Adam Barnett
    • 5
    • 6
  1. 1.School of Veterinary ScienceUniversity of QueenslandGattonAustralia
  2. 2.Department of Applied EcologyNorth Carolina State UniversityRaleighUSA
  3. 3.Western Australian Fisheries and Marine Research LaboratoriesNorth BeachAustralia
  4. 4.Fisheries and Aquaculture Centre, Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  5. 5.School of Life and Environmental SciencesDeakin UniversityMelbourneAustralia
  6. 6.Estuary and Tidal Wetland Ecosystems Research Group, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations