Advertisement

Oecologia

, Volume 178, Issue 3, pp 783–793 | Cite as

Nectar robbery by a hermit hummingbird: association to floral phenotype and its influence on flowers and network structure

  • Pietro Kiyoshi Maruyama
  • Jeferson Vizentin-Bugoni
  • Bo Dalsgaard
  • Ivan Sazima
  • Marlies Sazima
Plant-microbe-animal interactions - Original research

Abstract

Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving  P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant–hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30 % of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9 % of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure.

Keywords

Antagonism Atlantic rainforest Modularity Mutualism Phaethornis ruber Plant–pollinator interactions 

Notes

Acknowledgments

We thank the staff and administration of the Núcleo Picinguaba for the permission to carry out our study, Marcelo F. Moro for the map in the ESM, and Aline G. Coelho for sharing information on P. ruber robbing in flowers from her unpublished study. We are also grateful to the two anonymous reviewers and the editor for comments on a previous version of the manuscript. Financial support was provided by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) through a PhD scholarship to PKM and research grant to MS; CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) through a PDSE scholarship to PKM (processo: 99999.012341/2013-04) and JVB (processo: 99999.008012/2014-08) and a Ph.D. scholarship to JVB. PKM, JVB, and BD also thank the Danish National Research Foundation for its support of the Center for Macroecology, Evolution and Climate. The experiments in this study comply with the current laws of Brazil.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2015_3275_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2198 kb)
442_2015_3275_MOESM2_ESM.mpg (8.6 mb)
Supplementary material 2 (MPG 8780 kb)

References

  1. Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Model Softw 26:173–178. doi: 10.1016/j.envsoft.2010.08.003 CrossRefGoogle Scholar
  2. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects model using Eigen and S4. R package version 1.1–6. Available at: http://CRAN.R-project.org/package=lme4
  4. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9. doi: 10.1186/1472-6785-6-9 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkGoogle Scholar
  6. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287. doi: 10.1046/j.1461-0248.2001.00218.x CrossRefGoogle Scholar
  7. Brosi BJ, Briggs H (2013) Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc Natl Acad Sci USA 110:13044–13048. doi: 10.1073/pnas.1307438110 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Burkle LA, Irwin RE, Newman DA (2007) Predicting the effects of nectar robbing on plant reproduction: implications of pollen limitation and plant mating system. Am J Bot 94:1935–1943. doi: 10.3732/ajb.94.12.1935 PubMedCrossRefGoogle Scholar
  9. Buzato S, Sazima M, Sazima I (2000) Hummingbird–pollinated floras at three Atlantic forest sites. Biotropica 32:824–841. doi: 10.1111/j.1744-7429.2000.tb00621.x CrossRefGoogle Scholar
  10. Dalsgaard B, Martín González AM, Olesen JM, Ollerton J, Timmermann A, Andersen LH, Tossas AG (2009) Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159:757–766. doi: 10.1007/s00442-008-1255-z PubMedCrossRefGoogle Scholar
  11. Dormann CF, Strauss R (2014) A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol 5:90–98. doi: 10.1111/2041-210X.12139 CrossRefGoogle Scholar
  12. Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11Google Scholar
  13. Feinsinger P, Colwell RK (1978) Community organization among neotropical nectar-feeding birds. Am Zool 18:779–795. doi: 10.1093/icb/18.4.779 Google Scholar
  14. Fontaine C, Guimarães PR Jr, Kéfi S, Loeuille N, Memmott J, van der Putten WH, van Veen FJF, Thébault E (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181. doi: 10.1111/j.1461-0248.2011.01688.x PubMedCrossRefGoogle Scholar
  15. Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054. doi: 10.1890/12-1620.1 PubMedCrossRefGoogle Scholar
  16. Genini J, Morellato LP, Guimarães PR Jr, Olesen JM (2010) Cheaters in mutualism networks. Biol Lett 6:494–497. doi: 10.1098/rsbl.2009.1021 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Guimarães PR Jr, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513. doi: 10.1016/j.envsoft.2006.04.002 CrossRefGoogle Scholar
  18. Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253CrossRefGoogle Scholar
  19. Irwin RE (2000) Hummingbird avoidance of nectar-robbed plants: spatial location or visual cues. Oikos 91:499–506. doi: 10.1034/j.1600-0706.2000.910311.x CrossRefGoogle Scholar
  20. Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41:271–292. doi: 10.1146/annurev.ecolsys.110308.120330 CrossRefGoogle Scholar
  21. Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurschi MCG, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP and Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12(1):123–145. http://www.biotaneotropica.org.br/v12n1/en/abstract?article+bn01812012012
  22. Justino D, Maruyama PK, Oliveira PE (2011) Floral resource availability and hummingbird territorial behaviour on a Neotropical savanna shrub. J Ornithol 153:189–197. doi: 10.1007/s10336-011-0726-x CrossRefGoogle Scholar
  23. Lara C, Ornelas J (2001) Preferential nectar robbing of flowers with long corollas: experimental studies of two hummingbird species visiting three plant species. Oecologia 128:263–273. doi: 10.1007/s004420100640 CrossRefGoogle Scholar
  24. Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 81:2651–2661. doi:10.1890/0012-9658(2000)081[2651:ANRCOM]2.0.CO;2CrossRefGoogle Scholar
  25. Marquitti FMD, Guimarães PR Jr, Pires MM, Bittencourt LF (2014) MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37:221–224. doi: 10.1111/j.1600-0587.2013.00506.x CrossRefGoogle Scholar
  26. Maruyama PK, Oliveira GM, Ferreira C, Dalsgaard B, Oliveira PE (2013) Pollination syndromes ignored: importance of non-ornithophilous flowers to Neotropical savanna hummingbirds. Naturwissenschaften 100:1061–1068. doi: 10.1007/s00114-013-1111-9 PubMedCrossRefGoogle Scholar
  27. Maruyama PK, Vizentin-Bugoni J, Oliveira GM, Oliveira PE, Dalsgaard B (2014) Morphological and spatio-temporal mismatches shape a Neotropical savanna plant-hummingbird network. Biotropica 46:740–747. doi: 10.1111/btp.12170 CrossRefGoogle Scholar
  28. Maruyama PK, Vizentin-Bugoni J, Dalsgaard B, Sazima M (2015) Pollination and breeding system of Canna paniculata (Cannaceae) in a montane Atlantic rainforest: asymmetric dependence on a hermit hummingbird. Acta Bot Bras 29:157–160. doi: 10.1590/0102-33062014abb3590 CrossRefGoogle Scholar
  29. McDade LA, Kinsman S (1980) The impact of floral parasitism in two neotropical hummingbird–pollinated plant species. Evolution 34:944–958CrossRefGoogle Scholar
  30. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0–10. Available at: http://CRAN.R-project.org/package=vegan
  31. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896. doi: 10.1073/pnas.0706375104 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ollerton J, Alarcón R, Waser N, Price M, Watts S, Cranmer L, Hingston A, Peter C, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480. doi: 10.1093/aob/mcp031 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi: 10.1111/j.1600-0706.2010.18644.x CrossRefGoogle Scholar
  34. Sauve A, Fontaine C, Thébault E (2014) Structure-stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123:378–384. doi: 10.1111/j.1600-0706.2013.00743.x CrossRefGoogle Scholar
  35. Sazima I, Buzato S, Sazima M (1995) The saw-billed hermit Ramphodon naevius and its flowers in southeastern Brazil. J Ornithol 136:195–206. doi: 10.1007/BF01651241 CrossRefGoogle Scholar
  36. Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B, Dehling DM, Plein M, Saavedra F, Sandel B, Svenning J-C, Böhning-Gaese K, Dormann CF (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463. doi: 10.1111/ele.12245 PubMedCrossRefGoogle Scholar
  37. Staniczenko PP, Kopp JC, Allesina S (2013) The ghost of nestedness in ecological networks. Nat Commun 4:1391. doi: 10.1038/ncomms2422 PubMedCrossRefGoogle Scholar
  38. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–859. doi: 10.1126/science.1188321 PubMedCrossRefGoogle Scholar
  39. Vizentin-Bugoni J, Maruyama PK, Sazima M (2014) Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proc Royal Soc B 281:20132397. doi: 10.1098/rspb.2013.2397 CrossRefGoogle Scholar
  40. Wilson P, Castellanos MC, Hogue JN, Thomson JD, Armbruster WS (2004) A multivariate search for pollination syndromes among penstemons. Oikos 104:345–361. doi: 10.1111/j.0030-1299.2004.12819.x CrossRefGoogle Scholar
  41. Yoshikawa T, Isagi Y (2013) Determination of temperate bird–flower interactions as entangled mutualistic and antagonistic sub-networks: characterization at the network and species levels. J Anim Ecol 83:651–660. doi: 10.1111/1365-2656.12161 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pietro Kiyoshi Maruyama
    • 1
    • 2
  • Jeferson Vizentin-Bugoni
    • 1
    • 2
  • Bo Dalsgaard
    • 2
  • Ivan Sazima
    • 3
    • 4
  • Marlies Sazima
    • 5
  1. 1.Programa de Pós-Graduação em EcologiaUniversidade Estadual de Campinas (Unicamp)CampinasBrazil
  2. 2.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
  3. 3.Museu de ZoologiaUniversidade Estadual de Campinas (Unicamp)CampinasBrazil
  4. 4.Projeto Dacnis, Estrada do Rio Escuro 4754Sertão das CotiasUbatubaBrazil
  5. 5.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de Campinas (Unicamp)CampinasBrazil

Personalised recommendations